Displaying publications 81 - 100 of 149 in total

Abstract:
Sort:
  1. Hamsan MH, Nofal MM, Aziz SB, Brza MA, Dannoun EMA, Murad AR, et al.
    Polymers (Basel), 2021 Apr 11;13(8).
    PMID: 33920346 DOI: 10.3390/polym13081233
    Chitosan (CS)-dextran (DN) biopolymer electrolytes doped with ammonium iodide (NH4I) and plasticized with glycerol (GL), then dispersed with Zn(II)-metal complex were fabricated for energy device application. The CS:DN:NH4I:Zn(II)-complex was plasticized with various amounts of GL and the impact of used metal complex and GL on the properties of the formed electrolyte were investigated.The electrochemical impedance spectroscopy (EIS) measurements have shown that the highest conductivity for the plasticized system was 3.44 × 10-4 S/cm. From the x-ray diffraction (XRD) measurements, the plasticized electrolyte with minimum degree of crystallinity has shown the maximum conductivity. The effect of (GL) plasticizer on the film morphology was studied using FESEM. It has been confirmed via transference number analysis (TNM) that the transport mechanism in the prepared electrolyte is predominantly ionic in nature with a high transference number of ion (ti)of 0.983. From a linear sweep voltammetry (LSV) study, the electrolyte was found to be electrochemically constant as the voltage sweeps linearly up to 1.25 V. The cyclic voltammetry (CV) curve covered most of the area of the current-potential plot with no redox peaks and the sweep rate was found to be affecting the capacitance. The electric double-layer capacitor (EDLC) has shown a great performance of specific capacitance (108.3 F/g), ESR(47.8 ohm), energy density (12.2 W/kg) and power density (1743.4 W/kg) for complete 100 cycles at a current density of 0.5 mA cm-2.
    Matched MeSH terms: Electric Conductivity
  2. Aziz SB, Asnawi ASFM, Kadir MFZ, Alshehri SM, Ahamad T, Yusof YM, et al.
    Polymers (Basel), 2021 Apr 07;13(8).
    PMID: 33916979 DOI: 10.3390/polym13081183
    In this work, a pair of biopolymer materials has been used to prepare high ion-conducting electrolytes for energy storage application (ESA). The chitosan:methylcellulose (CS:MC) blend was selected as a host for the ammonium thiocyanate NH4SCN dopant salt. Three different concentrations of glycerol was successfully incorporated as a plasticizer into the CS-MC-NH4SCN electrolyte system. The structural, electrical, and ion transport properties were investigated. The highest conductivity of 2.29 × 10-4 S cm-1 is recorded for the electrolyte incorporated 42 wt.% of plasticizer. The complexation and interaction of polymer electrolyte components are studied using the FTIR spectra. The deconvolution (DVN) of FTIR peaks as a sensitive method was used to calculate ion transport parameters. The percentage of free ions is found to influence the transport parameters of number density (n), ionic mobility (µ), and diffusion coefficient (D). All electrolytes in this work obey the non-Debye behavior. The highest conductivity electrolyte exhibits the dominancy of ions, where the ionic transference number, tion value of (0.976) is near to infinity with a voltage of breakdown of 2.11 V. The fabricated electrochemical double-layer capacitor (EDLC) achieves the highest specific capacitance, Cs of 98.08 F/g at 10 mV/s by using the cyclic voltammetry (CV) technique.
    Matched MeSH terms: Electric Conductivity
  3. Rayung M, Aung MM, Su'ait MS, Chuah Abdullah L, Ahmad A, Lim HN
    ACS Omega, 2020 Jun 23;5(24):14267-14274.
    PMID: 32596563 DOI: 10.1021/acsomega.9b04348
    Biobased polymers are useful materials in substituting conventional petroleum-derived polymers because of their good properties, ready availability, and abundance in nature. This study reports a new jatropha oil-based gel polymer electrolyte (GPE) for use in dye-sensitized solar cells (DSSCs). The GPE was prepared by mixing jatropha oil-based polyurethane acrylate (PUA) with different concentrations of lithium iodide (LiI). The GPE was characterized by infrared spectroscopy, thermal analysis, lithium nuclear magnetic resonance analysis, electrochemical analysis, and photocurrent conversion efficiency. The highest room-temperature ionic conductivity of 1.88 × 10-4 S cm-1 was obtained at 20 wt % of LiI salt. Additionally, the temperature-dependent ionic conductivity of the GPE exhibited Arrhenius behavior with an activation energy of 0.42 eV and a pre-exponential factor of 1.56 × 103 S cm-1. The electrochemical stability study showed that the PUA GPE was stable up to 2.35 V. The thermal stability of the gel electrolyte showed an improvement after the addition of the salt, suggesting a strong intermolecular interaction between PUA and Li, which leads to polymer-salt complexation, as proven by Fourier transform infrared spectroscopy analysis. A DSSC has been assembled using the optimum ionic conductivity gel electrolyte which indicated 1.2% efficiency under 1 sun condition. Thus, the jatropha oil-based GPE demonstrated favorable properties that make it a promising alternative to petroleum-derived polymer electrolytes in DSSCs.
    Matched MeSH terms: Electric Conductivity
  4. Dhandapani S, Evers S
    Sci Total Environ, 2020 Nov 10;742:140648.
    PMID: 32721749 DOI: 10.1016/j.scitotenv.2020.140648
    Fire is one of the major issues facing Southeast Asian peatlands causing socio-economic, human health and climate crises. Many of these fires in the region are associated with land clearing or management practices for oil palm plantations. Here we study the direct post-fire impacts of slash-and-burn oil palm agriculture on greenhouse gas emissions, peat physico-chemical properties and nutrient concentrations. Greenhouse gas (GHG) emissions were measured using Los Gatos ultraportable greenhouse gas analyser one month after a fire in dry season and five months after the fire event, in wet season. Surface soil samples were collected from each individual GHG measurement points, along with 50 cm cores from both burnt and non-burnt control areas for lab analyses. As an immediate post-fire impact, carbon dioxide (CO2) and methane (CH4) emissions, pH, electrical conductivity, and all macronutrient concentrations except nitrogen (N) were increased multi-fold, while the redox potential, carbon (C) and N content were greatly reduced in the burnt region. While some of the properties such as CO2 emissions, and electrical conductivity reverted to normal after five months, other properties such as CH4 emissions, pH and nutrient concentrations remained high in the burnt region. This study also found very high loss of surface peat C content in the burnt region post fire, which is irreversible. The results also show that surface peat layers up to 20 cm depth were affected the most by slash-and-burn activity in oil palm agriculture, however the intensity of fire can vary widely between different oil palm management and needs further research to fully understand the long term and regional impacts of such slash-and-burn activity in tropical peatlands.
    Matched MeSH terms: Electric Conductivity
  5. Brza MA, B Aziz S, Anuar H, Dannoun EMA, Ali F, Abdulwahid RT, et al.
    Polymers (Basel), 2020 Aug 23;12(9).
    PMID: 32842522 DOI: 10.3390/polym12091896
    In the present work, a novel polymer composite electrolytes (PCEs) based on poly(vinyl alcohol) (PVA): ammonium thiocyanate (NH4SCN): Cd(II)-complex plasticized with glycerol (Gly) are prepared by solution cast technique. The film structure was examined by XRD and FTIR routes. The utmost ambient temperature DC ionic conductivity (σDC) of 2.01 × 10-3 S cm-1 is achieved. The film morphology was studied by field emission scanning electron microscopy (FESEM). The trend of σDC is further confirmed with investigation of dielectric properties. Transference numbers of ions (tion) and electrons (tel) are specified to be 0.96 and 0.04, respectively. Linear sweep voltammetry (LSV) displayed that the PCE potential window is 2.1 V. The desired mixture of activated carbon (AC) and carbon black was used to fabricate the electrodes of the EDLC. Cyclic voltammetry (CV) was carried out by sandwiching the PCEs between two carbon-based electrodes, and it revealed an almost rectangular shape. The EDLC exhibited specific capacitance, energy density, and equivalent series resistance with average of 160.07F/g, 18.01Wh/kg, and 51.05Ω, respectively, within 450 cycles. The EDLC demonstrated the initial power density as 4.065 × 103 W/Kg.
    Matched MeSH terms: Electric Conductivity
  6. Chaudhry AR, Irfan A, Muhammad S, Al-Sehemi AG, Ahmed R, Jingping Z
    J Mol Graph Model, 2017 08;75:355-364.
    PMID: 28651184 DOI: 10.1016/j.jmgm.2017.05.012
    In the present study, we use the state of art density functional theory (DFT) techniques to calculate the structural, optoelectronic and nonlinear optical (NLO) properties for two novel chalcone derivatives. The geometrical structures of chalcone derivatives compound 1 and 2 are optimized using periodic boundary conditions (PBC) in solid-state phase as well as isolated single molecular geometry in the gas phase. The reasonable agreement is found among experimental, solid-state and gas phase single molecular geometries, which provide us, further confidence to explore the potential of above-entitled derivatives as good functional materials for electro-optical applications. For instance, the frequency dependent real parts of dielectric functions are calculated for compound 1 and 2. The maximum value of real part of the dielectric function for compound 1 and 2 at 0eV are computed as 4.35 and 6.68 for the polarization vectors of (001) directions, respectively, which reveals the fact that the compound 1 and 2 might be good charge transport materials. The reflectivities of the compound 1 and 2 are 0.64 and 0.45 revealing that the compound 2 might be more efficient material for organic photovoltaic (OPV) applications. The results of the refractive index improved by doping the strong electron withdrawing groups (EWGs) shows that the compound 2 might be good refractor of the photon as compared to compound 1. The calculated values for static second-order polarizability are 3498 and 10464 a. u. and for frequency dependent second harmonic generations are 2557 and 6429 a. u. for compound 1 and 2, respectively, which indicates their significant potential for possible nonlinear optical applications.
    Matched MeSH terms: Electric Conductivity
  7. Asnawi ASFM, Aziz SB, Brevik I, Brza MA, Yusof YM, Alshehri SM, et al.
    Polymers (Basel), 2021 Jan 26;13(3).
    PMID: 33530553 DOI: 10.3390/polym13030383
    The polymer electrolyte system of chitosan/dextran-NaTf with various glycerol concentrations is prepared in this study. The electrical impedance spectroscopy (EIS) study shows that the addition of glycerol increases the ionic conductivity of the electrolyte at room temperature. The highest conducting plasticized electrolyte shows the maximum DC ionic conductivity of 6.10 × 10-5 S/cm. Field emission scanning electron microscopy (FESEM) is used to investigate the effect of plasticizer on film morphology. The interaction between the electrolyte components is confirmed from the existence of the O-H, C-H, carboxamide, and amine groups. The XRD study is used to determine the degree of crystallinity. The transport parameters of number density (n), ionic mobility (µ), and diffusion coefficient (D) of ions are determined using the percentage of free ions, due to the asymmetric vibration (υas(SO3)) and symmetric vibration (υs(SO3)) bands. The dielectric property and relaxation time are proved the non-Debye behavior of the electrolyte system. This behavior model is further verified by the existence of the incomplete semicircle arc from the Argand plot. Transference numbers of ion (tion) and electron (te) for the highest conducting plasticized electrolyte are identified to be 0.988 and 0.012, respectively, confirming that the ions are the dominant charge carriers. The tion value are used to further examine the contribution of ions in the values of the diffusion coefficient and mobility of ions. Linear sweep voltammetry (LSV) shows the potential window for the electrolyte is 2.55 V, indicating it to be a promising electrolyte for application in electrochemical energy storage devices.
    Matched MeSH terms: Electric Conductivity
  8. Ramlli MA, Isa MI
    J Phys Chem B, 2016 11 10;120(44):11567-11573.
    PMID: 27723333
    Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transference number measurement (TNM) techniques were applied to investigate the complexation, structural, and ionic transport properties of and the dominant charge-carrier species in a solid biopolymer electrolyte (SBE) system based on carboxymethyl cellulose (CMC) doped with ammonium fluoride (NH4F), which was prepared via a solution casting technique. The SBEs were partially opaque in appearance, with no phase separation. The presence of interactions between the host polymer (CMC) and the ionic dopant (NH4F) was proven by FT-IR analysis at the C-O band. XRD spectra analyzed using Origin 8 software disclose that the degree of crystallinity (χc%) of the SBEs decreased with the addition of NH4F, indicating an increase in the amorphous nature of the SBEs. Analysis of the ionic transport properties reveals that the ionic conductivity of the SBEs is dependent on the ionic mobility (μ) and diffusion of ions (D). TNM analysis confirms that the SBEs are proton conductors.
    Matched MeSH terms: Electric Conductivity
  9. Gubartallah EA, Makahleh A, Quirino JP, Saad B
    Molecules, 2018 05 08;23(5).
    PMID: 29738463 DOI: 10.3390/molecules23051112
    A rapid and green analytical method based on capillary electrophoresis with capacitively coupled contactless conductivity detection (C⁴D) for the determination of eight environmental pollutants, the biogenic amines (putrescine, cadaverine, spermidine, spermine, tyramine, 2-phenylamine, histamine and tryptamine), is described. The separation was achieved under normal polarity mode at 24 °C and 25 kV with a hydrodynamic injection (50 mbar for 5 s) and using a bare fused-silica capillary (95 cm length × 50 µm i.d.) (detection length of 10.5 cm from the outlet end of the capillary). The optimized background electrolyte consisted of 400 mM malic acid. C⁴D parameters were set at a fixed amplitude (50 V) and frequency (600 kHz). Under the optimum conditions, the method exhibited good linearity over the range of 1.0⁻100 µg mL−1 (R² ≥ 0.981). The limits of detection based on signal to noise (S/N) ratios of 3 and 10 were ≤0.029 µg mL−1. The method was used for the determination of seawater samples that were spiked with biogenic amines. Good recoveries (77⁻93%) were found.
    Matched MeSH terms: Electric Conductivity
  10. Foo CY, Lim HN, Mahdi MA, Wahid MH, Huang NM
    Sci Rep, 2018 May 09;8(1):7399.
    PMID: 29743664 DOI: 10.1038/s41598-018-25861-3
    Three-dimensional (3D) printing technology provides a novel approach to material fabrication for various applications because of its ability to create low-cost 3D printed platforms. In this study, a printable graphene-based conductive filament was employed to create a range of 3D printed electrodes (3DEs) using a commercial 3D printer. This printing technology provides a simplistic and low-cost approach, which eliminates the need for the ex-situ modification and post-treatment of the product. The conductive nature of the 3DEs provides numerous deposition platforms for electrochemical active nanomaterials such as graphene, polypyrrole, and cadmium sulfide, either through electrochemical or physical approaches. To provide proof-of-concept, these 3DEs were physiochemically and electrochemically evaluated and proficiently fabricated into a supercapacitor and photoelectrochemical sensor. The as-fabricated supercapacitor provided a good capacitance performance, with a specific capacitance of 98.37 Fg-1. In addition, these 3DEs were fabricated into a photoelectrochemical sensing platform. They had a photocurrent response that exceeded expectations (~724.1 μA) and a lower detection limit (0.05 μM) than an ITO/FTO glass electrode. By subsequently modifying the printing material and electrode architecture, this 3D printing approach could provide a facile and rapid manufacturing process for energy devices based on the conceptual design.
    Matched MeSH terms: Electric Conductivity
  11. Mohd Noor Zairi Mohd Sapri, Azizah Hanom Ahmad
    Science Letters, 2016;10(1):11-13.
    MyJurnal
    Solid polymer electrolytes electrolytes based Poly
    (ethylene oxide) (PEO) complexed with sodium
    trifluoromethanesulfonate (NaCF3SO3
    ) salt were prepared by
    using solution cast technique. Ion-polymer ionic conductivity
    and interaction studies have been reported by Electrical
    Impedance spectroscopy (EIS) and Fourier transform infrared
    spectroscopy (FTIR). FTIR studies suggested that there are
    stronger interaction between Na+
    ions and the polymer than
    interaction of anions cations of the salt. The temperature
    dependance electrical conductivity of polymer electrolytes films
    follow Arrhenius relation and the low activation energy 0.2993
    eV was observed for PEO-18 wt. % NaCF3SO3 below 323 K.
    Matched MeSH terms: Electric Conductivity
  12. Saravanan S, Sareen N, Abu-El-Rub E, Ashour H, Sequiera GL, Ammar HI, et al.
    Sci Rep, 2018 10 10;8(1):15069.
    PMID: 30305684 DOI: 10.1038/s41598-018-33144-0
    Abnormal conduction and improper electrical impulse propagation are common in heart after myocardial infarction (MI). The scar tissue is non-conductive therefore the electrical communication between adjacent cardiomyocytes is disrupted. In the current study, we synthesized and characterized a conductive biodegradable scaffold by incorporating graphene oxide gold nanosheets (GO-Au) into a clinically approved natural polymer chitosan (CS). Inclusion of GO-Au nanosheets in CS scaffold displayed two fold increase in electrical conductivity. The scaffold exhibited excellent porous architecture with desired swelling and controlled degradation properties. It also supported cell attachment and growth with no signs of discrete cytotoxicity. In a rat model of MI, in vivo as well as in isolated heart, the scaffold after 5 weeks of implantation showed a significant improvement in QRS interval which was associated with enhanced conduction velocity and contractility in the infarct zone by increasing connexin 43 levels. These results corroborate that implantation of novel conductive polymeric scaffold in the infarcted heart improved the cardiac contractility and restored ventricular function. Therefore, our approach may be useful in planning future strategies to construct clinically relevant conductive polymer patches for cardiac patients with conduction defects.
    Matched MeSH terms: Electric Conductivity
  13. Mohd Chachuli SA, Hamidon MN, Mamat MS, Ertugrul M, Abdullah NH
    Sensors (Basel), 2018 Aug 01;18(8).
    PMID: 30071579 DOI: 10.3390/s18082483
    High demand of semiconductor gas sensor works at low operating temperature to as low as 100 °C has led to the fabrication of gas sensor based on TiO₂ nanoparticles. A sensing film of gas sensor was prepared by mixing the sensing material, TiO₂ (P25) and glass powder, and B₂O₃ with organic binder. The sensing film was annealed at temperature of 500 °C in 30 min. The morphological and structural properties of the sensing film were characterized by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The gas sensor was exposed to hydrogen with concentration of 100⁻1000 ppm and was tested at different operating temperatures which are 100 °C, 200 °C, and 300 °C to find the optimum operating temperature for producing the highest sensitivity. The gas sensor exhibited p-type conductivity based on decreased current when exposed to hydrogen. The gas sensor showed capability in sensing low concentration of hydrogen to as low as 100 ppm at 100 °C.
    Matched MeSH terms: Electric Conductivity
  14. Abu Bakar NI, Chandren S, Attan N, Leaw WL, Nur H
    Front Chem, 2018;6:370.
    PMID: 30255010 DOI: 10.3389/fchem.2018.00370
    The demonstration of the structure-properties relationship of shape-dependent photocatalysts remains a challenge today. Herein, one-dimensional (1-D)-like titania (TiO2), as a model photocatalyst, has been synthesized under a strong magnetic field in the presence of a magnetically responsive liquid crystal as the structure-aligning agent to demonstrate the relationship between a well-aligned structure and its photocatalytic properties. The importance of the 1-D-like TiO2 and its relationship with the electronic structures that affect the electron-hole recombination and the photocatalytic activity need to be clarified. The synthesis of 1-D-like TiO2 with liquid crystal as the structure-aligning agent was carried out using the sol-gel method under a magnetic field (0.3 T). The mixture of liquid crystal, 4'-pentyl-4-biphenylcarbonitrile (5CB), tetra-n-butyl orthotitanate (TBOT), 2-propanol, and water, was subjected to slow hydrolysis under a magnetic field. The TiO2-5CB took a well-aligned whiskerlike shape when the reaction mixture was placed under the magnetic field, while irregularly shaped TiO2-5CB particles were formed when no magnetic field was applied. It shows that the strong interaction between 5CB and TBOT during the hydrolysis process under a magnetic field controls the shape of titania. The intensity of the emission peaks in the photoluminescence spectrum of 1-D-like TiO2-5CB was lowered compared with the TiO2-5CB synthesized without the magnetic field, suggesting the occurrence of electron transfer from 5CB to the 1-D-like TiO2-5CB during ultraviolet irradiation. Apart from that, direct current electrical conductivity and Hall effect studies showed that the 1-D-like TiO2 composite enhanced electron mobility. Thus, the recombination of electrons and holes was delayed due to the increase in electron mobility; hence, the photocatalytic activity of the 1-D-like TiO2 composite in the oxidation of styrene in the presence of aqueous hydrogen peroxide under UV irradiation was enhanced. This suggests that the 1-D-like shape of TiO2 composite plays an important role in its photocatalytic activity.
    Matched MeSH terms: Electric Conductivity
  15. Jannah, A.N., Erwana, N.Y., Jamion, N.A.
    MyJurnal
    This study was carried out to investigate the electrical properties of YBCO sample as superconductor
    and the effect of addition of Co3O4 on the superconducting properties of YBCO superconductor. The
    YBCO sample was prepared by solid state reaction route. The samples were prepared by each with
    weight percentage of cobalt oxide of x= 0.00, x= 0.01, x= 0.02 and x= 0.03. Electrical Conduction by
    Multimeter, Fourier Transform Infrared (FTIR), Critical temperature (Tc) measurement, X-ray
    Diffraction (XRD), and Scanning Electron Microscopy (SEM) were conducted for analysis.
    Multimeter showed all samples were in electric conduction, FTIR showed that carbonyl compound in
    the sample was removed after calcinations. Tc measurement showed that the critical temperature of
    sample of x= 0.02 was increased compared to sample of x= 0.00. XRD showed all samples have
    orthorhombic structure and SEM showed that the grain size was increased as increased the cobalt
    addition in YBCO superconductor. Besides, the EDX also showed the composition of elements
    YBCO were tally with chemicals used for pure YBCO and addition cobalt oxide into YBCO
    superconductor.
    Matched MeSH terms: Electric Conductivity
  16. Ramakrishnan R, Gimbun J, Ramakrishnan P, Ranganathan B, Reddy SMM, Shanmugam G
    Curr Drug Deliv, 2019;16(10):913-922.
    PMID: 31663478 DOI: 10.2174/1567201816666191029122445
    BACKGROUND: This paper presents the effect of solution properties and operating parameters of polyethylene oxide (PEO) based nanofiber using a wire electrode-based needleless electrospinning.

    METHODS: The feed solution was prepared using a PEO dissolved in water or a water-ethanol mixture. The PEO solution is blended with Bovine Serum Albumin protein (BSA) as a model drug to study the effect of the electrospinning process on the stability of the loaded protein. The polymer solution properties such as viscosity, surface tension, and conductivity were controlled by adjusting the solvent and salt content. The morphology and fiber size distribution of the nanofiber was analyzed using scanning electron microscopy.

    RESULTS: The results show that the issue of a beaded nanofiber can be eliminated either by increasing the solution viscosity or by the addition of salt and ethanol to the PEO-water system. The addition of salt and solvent produced a high frequency of smaller fiber diameter ranging from 100 to 150 nm. The encapsulation of BSA in PEO nanofiber was characterized by three different spectroscopy techniques (i.e. circular dichroism, Fourier transform infrared, and fluorescence) and the results showed the BSA is well encapsulated in the PEO matrix with no changes in the protein structure.

    CONCLUSION: This work may serve as a useful guide for a drug delivery industry to process a nanofiber at a large and continuous scale with a blend of drugs in nanofiber using a wire electrode electrospinning.

    Matched MeSH terms: Electric Conductivity
  17. Prommi T, Payakka A
    Sains Malaysiana, 2015;44:707-717.
    Biodiversity of aquatic insect and physicochemical water quality parameters in Mae Tao and Mae Ku watersheds were
    assessed bi-monthly from February 2011 to February 2012. A total of 59 families representing 9 orders were recorded.
    At order level, Trichoptera was found at the highest frequency in total abundance (45.75%) followed by Ephemeroptera
    (18.06%), Hemiptera (13.45%), Odonata (9.62%), Diptera (8.17%), Coleoptera (4.6%), Megaloptera (0.17%),
    Lepidoptera (0.11%) and Plecoptera (0.07%). The family Hydropsychidae was the most prominent and the most abundant
    aquatic insect taxa followed by Chironomidae. Water temperature, dissolved oxygen and ammonia-nitrogen were similar
    at all sampling stations. Significant variations in pH, electrical conductivity, total dissolved solids, sulfate, nitrate-nitrogen
    and alkalinity were found at all sampling stations. Taxa richness and diversity index significantly correlated with dissolved
    oxygen, sulfate, nitrate-nitrogen and ammonia-nitrogen (p<0.05, p<0.01). Physicochemical data and biological data
    showed that mostly the surface water quality in Mae Tao and Mae Ku watersheds were within Type III of The Surface
    Water Standard for Agriculture and Water Quality for Protection of Aquatic Resources in Thailand.
    Matched MeSH terms: Electric Conductivity
  18. Yee CN, Ooi CHR, Tan LP, Misran M, Tang NT
    PLoS One, 2019;14(3):e0213697.
    PMID: 30913207 DOI: 10.1371/journal.pone.0213697
    That water may not be an inert medium was indicated by the presence at water's interfaces a negatively charged solute free zone of several hundred microns in thickness called the exclusion zone (EZ). Further evidence was demonstrated by Ovchinnikova's experiments (2009) showing that water can store and release substantial amount of charge. We demonstrate that the charge storage capacity of water arises from highly stable large-scale ionic structures with measurable charge imbalances and discrete levels of charge density. We also show evidence that the charge zones formation requires ionic solutes, and their formation correlate to large change in conductivity, by as much as 250%. Our experiments indicate that large-scale structuring plays a pivotal role in electrolysis and conductivity in ionic solution. We propose that water is an electrochemically active medium and present a new model of electrolysis and conductivity in ionic solution.
    Matched MeSH terms: Electric Conductivity
  19. Hilaluddin F, Yusoff FM, Natrah FMI, Lim PT
    Mar Environ Res, 2020 Jun;158:104935.
    PMID: 32217292 DOI: 10.1016/j.marenvres.2020.104935
    To assess the effects of environmental changes on phytoplankton community structure in a mangrove ecosystem, phytoplankton distribution in Matang mangrove, Malaysia was examined. Phytoplankton and water samples, and in situ environmental parameters from three estuaries with differing levels of disturbance were examined monthly for one year. Two species, Cyclotella choctawhatcheeana and Skeletonema costatum, were dominant in the least disturbed and moderately disturbed areas, respectively. Skeletonema costatum was also the most dominant in the most disturbed area. Significant differences in phytoplankton density and biodiversity between the least and most disturbed areas were also observed. Principle component 1 (salinity, conductivity, total solids/water transparency and nitrogenous compounds) and PC2 (dissolved oxygen, pH and temperature) explained 60.4% of the total variance. This study illustrated that changes in phytoplankton community structure in Matang mangrove estuaries were significantly correlated with environmental parameters which were in turn influenced by ecosystem disturbance levels as well as seasonal changes.
    Matched MeSH terms: Electric Conductivity
  20. Gunathilake TMSU, Ching YC, Chuah CH, Hai ND, Nai-Shang L
    Pharm Res, 2020 Aug 30;37(9):178.
    PMID: 32864721 DOI: 10.1007/s11095-020-02910-z
    PURPOSE: Among various types of external stimuli-responsive DDS, electric-responsive DDS are more promising carriers as they exploit less complex, easily miniaturized electric signal generators and the possibility of fine-tuning the electric signals. This study investigates the use of intrinsically biocompatible biopolymers in electro-simulative drug delivery to enhance the release of poorly-soluble/non-ionic drug.

    METHODS: CMC/PLA/ZnO/CUR nanocomposite films were prepared by the dispersion of CMC and ZnO NPs in solubilized PLA/curcumin medium, followed by solvent casting step. Curcumin is poorly water-soluble and used as the model drug in this study. The films with different contents of CMC, PLA and ZnO NPs were characterized using FTIR, impedance spectroscopy, tensile testing and FESEM imaging. The in vitro drug release of the films was carried out in deionized water under DC electric field of 4.5 V.

    RESULTS: The ionic conductivity of the films increased with increasing the CMC concentration of the film. The addition of a small amount of ZnO NPs (2%) successfully restored the tensile properties of the film. In response to the application of the electric field, the composite films released drug with a near-linear profile. There was no noticeable amount of passive diffusion of the drug from the film with the absence of the electric field.

    CONCLUSION: The outcome of this study enabled the design of an electric-responsive nanocomposite platform for the delivery of poorly water-soluble/non-ionic drugs. Graphical abstract.

    Matched MeSH terms: Electric Conductivity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links