Displaying publications 81 - 100 of 133 in total

Abstract:
Sort:
  1. Naz T, Nazir Y, Nosheen S, Ullah S, Halim H, Fazili ABA, et al.
    Biomed Res Int, 2020;2020:8890269.
    PMID: 33457420 DOI: 10.1155/2020/8890269
    Carotenoids produced by microbial sources are of industrial and medicinal importance due to their antioxidant and anticancer properties. In the current study, optimization of β-carotene production in M. circinelloides strain 277.49 was achieved using response surface methodology (RSM). Cerulenin and ketoconazole were used to inhibit fatty acids and the sterol biosynthesis pathway, respectively, in order to enhance β-carotene production by diverting metabolic pool towards the mevalonate pathway. All three variables used in screening experiments were found to be significant for the production of β-carotene. The synergistic effect of the C/N ratio, cerulenin, and ketoconazole was further evaluated and optimized for superior β-carotene production using central composite design of RSM. Our results found that the synergistic combination of C/N ratios, cerulenin, and ketoconazole at different concentrations affected the β-carotene productions significantly. The optimal production medium (std. order 11) composed of C/N 25, 10 μg/mL cerulenin, and 150 mg/L ketoconazole, producing maximum β-carotene of 4.26 mg/L (0.43 mg/g) which was 157% greater in comparison to unoptimized medium (1.68 mg/L, 0.17 mg/g). So, it was concluded that metabolic flux had been successfully redirected towards the mevalonate pathway for enhanced β-carotene production in CBS 277.49.
    Matched MeSH terms: Escherichia coli/metabolism
  2. Ali SA, Chew YW, Omar TC, Azman N
    PLoS One, 2015;10(12):e0144189.
    PMID: 26642325 DOI: 10.1371/journal.pone.0144189
    Maintenance of recombinant plasmid vectors in host bacteria relies on the presence of selection antibiotics in the growth media to suppress plasmid -free segregants. However, presence of antibiotic resistance genes and antibiotics themselves is not acceptable in several applications of biotechnology. Previously, we have shown that FabV-Triclosan selection system can be used to select high and medium copy number plasmid vectors in E. coli. Here, we have extended our previous work and demonstrated that expression vectors containing FabV can be used efficiently to express heterologous recombinant proteins in similar or better amounts in E. coli host when compared with expression vectors containing β-lactamase. Use of small amount of non-antibiotic Triclosan as selection agent in growth medium, enhanced plasmid stability, applicability in various culture media, and compatibility with other selection systems for multiple plasmid maintenance are noteworthy features of FabV-Triclosan selection system.
    Matched MeSH terms: Escherichia coli/metabolism*
  3. Alkotaini B, Anuar N, Kadhum AA
    Appl Biochem Biotechnol, 2015 Feb;175(4):1868-78.
    PMID: 25427593 DOI: 10.1007/s12010-014-1410-4
    The mechanisms of action of AN5-1 against Gram-negative and Gram-positive bacteria were investigated by evaluations of the intracellular content leakage and by microscopic observations of the treated cells. Escherichia coli and Staphylococcus aureus were used for this investigation. Measurements of DNA, RNA, proteins, and β-galactosidase were taken, and the results showed a significant increase in the cultivation media after treatment with AN5-1 compared with the untreated cells. The morphological changes of treated cells were shown using transmission electron microscopy (TEM) and atomic force microscopy (AFM). The observations showed that AN5-1 acts against E. coli and against S. aureus in similar ways, by targeting the cell wall, causing disruptions; at a high concentration (80 AU/ml), these disruptions led to cell lysis. The 3D AFM imaging system showed that at a low concentration of 20 AU/ml, the effect of AN5-1 is restricted to pore formation only. Moreover, a separation between the cell wall and the cytoplasm was observed when Gram-negative bacteria were treated with a low concentration (20 AU/ml) of AN5-1.
    Matched MeSH terms: Escherichia coli/metabolism
  4. Chang CY, Krishnan T, Wang H, Chen Y, Yin WF, Chong YM, et al.
    Sci Rep, 2014;4:7245.
    PMID: 25430794 DOI: 10.1038/srep07245
    N-acylhomoserine lactone (AHL)-based quorum sensing (QS) is important for the regulation of proteobacterial virulence determinants. Thus, the inhibition of AHL synthases offers non-antibiotics-based therapeutic potentials against QS-mediated bacterial infections. In this work, functional AHL synthases of Pseudomonas aeruginosa LasI and RhlI were heterologously expressed in an AHL-negative Escherichia coli followed by assessments on their AHLs production using AHL biosensors and high resolution liquid chromatography-mass spectrometry (LCMS). These AHL-producing E. coli served as tools for screening AHL synthase inhibitors. Based on a campaign of screening synthetic molecules and natural products using our approach, three strongest inhibitors namely are salicylic acid, tannic acid and trans-cinnamaldehyde have been identified. LCMS analysis further confirmed tannic acid and trans-cinnemaldehyde efficiently inhibited AHL production by RhlI. We further demonstrated the application of trans-cinnemaldehyde inhibiting Rhl QS system regulated pyocyanin production in P. aeruginosa up to 42.06%. Molecular docking analysis suggested that trans-cinnemaldehyde binds to the LasI and EsaI with known structures mainly interacting with their substrate binding sites. Our data suggested a new class of QS-inhibiting agents from natural products targeting AHL synthase and provided a potential approach for facilitating the discovery of anti-QS signal synthesis as basis of novel anti-infective approach.
    Matched MeSH terms: Escherichia coli/metabolism
  5. Chen Q, Narayanan K
    Methods Mol Biol, 2015;1227:27-54.
    PMID: 25239740 DOI: 10.1007/978-1-4939-1652-8_2
    Recombineering is a powerful genetic engineering technique based on homologous recombination that can be used to accurately modify DNA independent of its sequence or size. One novel application of recombineering is the assembly of linear BACs in E. coli that can replicate autonomously as linear plasmids. A circular BAC is inserted with a short telomeric sequence from phage N15, which is subsequently cut and rejoined by the phage protelomerase enzyme to generate a linear BAC with terminal hairpin telomeres. Telomere-capped linear BACs are protected against exonuclease attack both in vitro and in vivo in E. coli cells and can replicate stably. Here we describe step-by-step protocols to linearize any BAC clone by recombineering, including inserting and screening for presence of the N15 telomeric sequence, linearizing BACs in vivo in E. coli, extracting linear BACs, and verifying the presence of hairpin telomere structures. Linear BACs may be useful for functional expression of genomic loci in cells, maintenance of linear viral genomes in their natural conformation, and for constructing innovative artificial chromosome structures for applications in mammalian and plant cells.
    Matched MeSH terms: Escherichia coli/metabolism
  6. Tan BH, Chor Leow T, Foo HL, Abdul Rahim R
    Biomed Res Int, 2014;2014:469298.
    PMID: 24592392 DOI: 10.1155/2014/469298
    A superoxide dismutase (SOD) gene of Lactococcus lactis M4 was cloned and expressed in a prokaryotic system. Sequence analysis revealed an open reading frame of 621 bp which codes for 206 amino acid residues. Expression of sodA under T7 promoter exhibited a specific activity of 4967 U/mg when induced with 1 mM of isopropyl-β-D-thiogalactopyranoside. The recombinant SOD was purified to homogeneity by immobilised metal affinity chromatography and Superose 12 gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analyses of the recombinant SOD detected a molecular mass of approximately 27 kDa. However, the SOD was in dimer form as revealed by gel filtration chromatography. The purified recombinant enzyme had a pI of 4.5 and exhibited maximal activity at 25°C and pH 7.2. It was stable up to 45°C. The insensitivity of this lactococcal SOD to cyanide and hydrogen peroxide established that it was a MnSOD. Although it has 98% homology to SOD of L. lactis IL1403, this is the first elucidated structure of lactococcal SOD revealing active sites containing the catalytic manganese coordinated by four ligands (H-27, H-82, D-168, and H-172).
    Matched MeSH terms: Escherichia coli/metabolism
  7. Saika A, Watanabe Y, Sudesh K, Tsuge T
    J Biosci Bioeng, 2014 Jun;117(6):670-5.
    PMID: 24484910 DOI: 10.1016/j.jbiosc.2013.12.006
    An obligate anaerobic bacterium Clostridium difficile has a unique metabolic pathway to convert leucine to 4-methylvalerate, in which 4-methyl-2-pentenoyl-CoA (4M2PE-CoA) is an intermediate of this pathway. 4M2PE-CoA is also able to be converted to 3-hydroxy-4-methylvalerate (3H4MV), a branched side chain monomer unit, for synthesis of polyhydroxyalkanoate (PHA) copolymer. In this study, to synthesize 3H4MV-containing PHA copolymer from leucine, the leucine metabolism-related enzymes (LdhA and HadAIBC) derived from C. difficile and PHA biosynthesis enzymes (PhaPCJAc and PhaABRe) derived from Aeromonas caviae and Ralstonia eutropha were co-expressed in the codon usage-improved Escherichia coli. Under microaerobic culture conditions, this E. coli was able to synthesize P(3HB-co-12.2 mol% 3H4MV) from glucose with the supplementation of 1 g/L leucine. This strain also produced P(3HB-co-12.6 mol% 3H4MV) using the culture supernatant of leucine overproducer E. coli strain NS1391 as the medium for PHA production, achieving 3H4MV copolymer synthesis only from glucose. Furthermore, we tested the feasibility of the 3H4MV copolymer synthesis in E. coli strain NS1391 from glucose. The recombinant E. coli NS1391 was able to synthesize P(3HB-co-3.0 mol% 3H4MV) from glucose without any leucine supplementation. This study demonstrates the potential of the new metabolic pathway for 3H4MV synthesis using leucine metabolism-related enzymes from C. difficile.
    Matched MeSH terms: Escherichia coli/metabolism
  8. Umar KM, Abdulkarim SM, Radu S, Abdul Hamid A, Saari N
    ScientificWorldJournal, 2012;2012:529031.
    PMID: 22645428 DOI: 10.1100/2012/529031
    A mimicked biosynthetic pathway of catechin metabolite genes from C. sinensis, consisting of flavanone 3 hydroxylase (F3H), dihydroflavonol reductase (DFR), and leucoanthocyanidin reductase (LCR), was designed and arranged in two sets of constructs: (a) single promoter in front of F3H and ribosome-binding sequences both in front of DFR and LCR; (b) three different promoters with each in the front of the three genes and ribosome-binding sequences at appropriate positions. Recombinant E. coli BL (DE3) harbouring the constructs were cultivated for 65 h at 26 °C in M9 medium consisting of 40 g/L glucose, 1 mM IPTG, and 3 mM eriodictyol. Compounds produced were extracted in ethyl acetate in alkaline conditions after 1 h at room temperature and identified by HPLC. Two of the four major catechins, namely, (-)-epicatechin (0.01) and (-)-epicatechin gallate (0.36 mg/L), and two other types ((+)-catechin hydrate (0.13 mg/L) and (-)-catechin gallate (0.04 mg/L)) were successfully produced.
    Matched MeSH terms: Escherichia coli/metabolism*
  9. Yee LN, Chuah JA, Chong ML, Phang LY, Raha AR, Sudesh K, et al.
    Microbiol Res, 2012 Oct 12;167(9):550-7.
    PMID: 22281521 DOI: 10.1016/j.micres.2011.12.006
    In this study, PHA biosynthesis operon of Comamonas sp. EB172, an acid-tolerant strain, consisting of three genes encoding acetyl-CoA acetyltransferase (phaA(Co) gene, 1182 bp), acetoacetyl-CoA reductase (phaB(Co) gene, 738 bp) and PHA synthase, class I (phaC(Co) gene, 1694 bp) were identified. Sequence analysis of the phaA(Co), phaB(Co) and phaC(Co) genes revealed that they shared more than 85%, 89% and 69% identity, respectively, with orthologues from Delftia acidovorans SPH-1 and Acidovorax ebreus TPSY. The PHA biosynthesis genes (phaC(Co) and phaAB(Co)) were successfully cloned in a heterologous host, Escherichia coli JM109. E. coli JM109 transformants harbouring pGEM'-phaC(Co)AB(Re) and pGEM'-phaC(Re)AB(Co) were shown to be functionally active synthesising 33 wt.% and 17 wt.% of poly(3-hydroxybutyrate) [P(3HB)]. E. coli JM109 transformant harbouring the three genes from the acid-tolerant Comamonas sp. EB172 (phaCAB(Co)) under the control of native promoter from Cupriavidus necator, in vivo polymerised P(3HB) when fed with glucose and volatile mixed organic acids (acetic acid:propionic acid:n-butyric acid) in ration of 3:1:1, respectively. The E. coli JM109 transformant harbouring phaCAB(Co) could accumulate P(3HB) at 2g/L of propionic acid. P(3HB) contents of 40.9% and 43.6% were achieved by using 1% of glucose and mixed organic acids, respectively.
    Matched MeSH terms: Escherichia coli/metabolism
  10. Kuan CS, Wong MT, Choi SB, Chang CC, Yee YH, Wahab HA, et al.
    Int J Mol Sci, 2011;12(7):4441-55.
    PMID: 21845088 DOI: 10.3390/ijms12074441
    Klebsiella pneumoniae causes neonatal sepsis and nosocomial infections. One of the strains, K. pneumoniae MGH 78578, shows high level of resistance to multiple microbial agents. In this study, domain family, amino acid sequence and topology analyses were performed on one of its hypothetical protein, YggG (KPN_03358). Structural bioinformatics approaches were used to predict the structure and functionality of YggG protein. The open reading frame (ORF) of yggG, which was a putative metalloprotease gene, was also cloned, expressed and characterized. The ORF was PCR amplified from K. pneumoniae MGH 78578 genomic DNA and cloned into a pET14-b vector for heterologous expression in Escherichia coli. The purified YggG protein was subsequently assayed for casein hydrolysis under different conditions. This protein was classified as peptidase M48 family and subclan gluzincin. It was predicted to contain one transmembrane domain by TMpred. Optimal protein expression was achieved by induction with 0.6 mM isopropyl thiogalactoside (IPTG) at 25 °C for six hours. YggG was purified as soluble protein and confirmed to be proteolytically active under the presence of 1.25 mM zinc acetate and showed optimum activity at 37 °C and pH 7.4. We confirmed for the first time that the yggG gene product is a zinc-dependent metalloprotease.
    Matched MeSH terms: Escherichia coli/metabolism
  11. Azaman SN, Ramakrishnan NR, Tan JS, Rahim RA, Abdullah MP, Ariff AB
    Biotechnol Appl Biochem, 2010 Aug;56(4):141-50.
    PMID: 20604747 DOI: 10.1042/BA20100104
    Induction strategies for the periplasmic production of recombinant human IFN-alpha2b (interferon-alpha2b) by recombinant Escherichia coli Rosetta-gami 2(DE3) were optimized in shake-flask cultures using response surface methodology based on the central composite design. The factors included in the present study were induction point, which related to the attenuance of the cell culture, IPTG (isopropyl beta-D-thiogalactoside) concentration and induction temperature. Second-order polynomial models were used to correlate the abovementioned factors to soluble periplasmic IFN-alpha2b formation and percentage of soluble IFN-alpha2b translocated to the periplasmic space of E. coli. The models were found to be significant and subsequently validated. The proposed induction strategies consisted of induction at an attenuance of 4 (measured as D600), IPTG concentration of 0.05 mM and temperature of 25 degrees C. The optimized induction strategy reduced inclusion-body formation as evidenced by electron microscopy and yielded 323.8 ng/ml of IFN-alpha2b in the periplasmic space with translocation of 74% of the total soluble product. In comparison with the non-optimized condition, soluble periplasmic production and the percentage of soluble IFN-alpha2b translocated to the periplasmic space obtained in optimized induction strategies were increased by approx. 20-fold and 1.4-fold respectively.
    Matched MeSH terms: Escherichia coli/metabolism*
  12. Yap WB, Tey BT, Alitheen NB, Tan WS
    J Chromatogr A, 2010 May 21;1217(21):3473-80.
    PMID: 20388569 DOI: 10.1016/j.chroma.2010.03.012
    Hepatitis B core antigen (HBcAg) is used as a diagnostic reagent for the detection of hepatitis B virus infection. In this study, immobilized metal affinity-expanded bed adsorption chromatography (IMA-EBAC) was employed to purify N-terminally His-tagged HBcAg from unclarified bacterial homogenate. Streamline Chelating was used as the adsorbent and the batch adsorption experiment showed that the optimal binding pH of His-tagged HBcAg was 8.0 with a binding capacity of 1.8 mg per ml of adsorbent. The optimal elution condition for the elution of His-tagged HBcAg from the adsorbent was at pH 7 in the presence of 500 mM imidazole and 1.5 M NaCl. The IMA-EBAC has successfully recovered 56% of His-tagged HBcAg from the unclarified E. coli homogenate with a purification factor of 3.64. Enzyme-linked immunosorbent assay (ELISA) showed that the antigenicity of the recovered His-tagged HBcAg was not affected throughout the IMA-EBAC purification process and electron microscopy revealed that the protein assembled into virus-like particles (VLP).
    Matched MeSH terms: Escherichia coli/metabolism
  13. Wong CF, Salleh AB, Basri M, Abd Rahman RN
    Biotechnol Appl Biochem, 2010 Sep;57(1):1-7.
    PMID: 20726840 DOI: 10.1042/BA20100224
    The structural gene of elastase strain K (elastase from Pseudomonas aeruginosa strain K), namely HindIII1500PstI, was successfully sequenced to contain 1497 bp. The amino acid sequence, deduced from the nucleotide sequence, revealed that the mature elastase consists of 301 amino acids, with a molecular mass of 33.1 kDa, and contains a conserved motif HEXXH, zinc ligands and residues involved in the catalysis of elastase strain K. The structural gene was successfully cloned to a shuttle vector, pUCP19, and transformed into Escherichia coli strains TOP10, KRX, JM109 and Tuner™ pLacI as well as P. aeruginosa strains PA01 (A.T.C.C. 47085) and S5, with detection of significant protein expression. Overexpression was detected from transformants KRX/pUCP19/HindIII1500PstI of E. coli and PA01/pUCP19/HindIII1500PstI of P. aeruginosa, with increases in elastolytic activity to 13.83- and 5.04-fold respectively relative to their controls. In addition, recombinant elastase strain K showed considerable stability towards numerous organic solvents such as methanol, ethanol, acetone, toluene, undecan-1-ol and n-dodecane, which typically pose a detrimental effect on enzymes; our finding provides further information to support the potential application of the enzyme in synthetic industries, particularly peptide synthesis.
    Matched MeSH terms: Escherichia coli/metabolism*
  14. Juahir H, Zain SM, Aris AZ, Yusoff MK, Mokhtar MB
    J Environ Monit, 2010 Jan;12(1):287-95.
    PMID: 20082024 DOI: 10.1039/b907306j
    The present study deals with the assessment of Langat River water quality with some chemometrics approaches such as cluster and discriminant analysis coupled with an artificial neural network (ANN). The data used in this study were collected from seven monitoring stations under the river water quality monitoring program by the Department of Environment (DOE) from 1995 to 2002. Twenty three physico-chemical parameters were involved in this analysis. Cluster analysis successfully clustered the Langat River into three major clusters, namely high, moderate and less pollution regions. Discriminant analysis identified seven of the most significant parameters which contribute to the high variation of Langat River water quality, namely dissolved oxygen, biological oxygen demand, pH, ammoniacal nitrogen, chlorine, E. coli, and coliform. Discriminant analysis also plays an important role as an input selection parameter for an ANN of spatial prediction (pollution regions). The ANN showed better prediction performance in discriminating the regional area with an excellent percentage of correct classification compared to discriminant analysis. Multivariate analysis, coupled with ANN, is proposed, which could help in decision making and problem solving in the local environment.
    Matched MeSH terms: Escherichia coli/metabolism
  15. Yoon KY, Tan WS, Tey BT, Lee KW, Ho KL
    Electrophoresis, 2013 Jan;34(2):244-53.
    PMID: 23161478 DOI: 10.1002/elps.201200257
    Hepatitis B core antigen (HBcAg) expressed in Escherichia coli is able to self-assemble into large and small capsids comprising 240 (triangulation number T = 4) and 180 (triangulation number T = 3) subunits, respectively. Conventionally, sucrose density gradient ultracentrifugation and SEC have been used to separate these capsids. However, good separation of the large and small particles with these methods is never achieved. In the present study, we employed a simple, fast, and cost-effective method to separate the T = 3 and T = 4 HBcAg capsids by using native agarose gel electrophoresis followed by an electroelution method (NAGE-EE). This is a direct, fast, and economic method for isolating the large and small HBcAg particles homogenously based on the hydrodynamic radius of the spherical particles. Dynamic light scattering analysis demonstrated that the T = 3 and T = 4 HBcAg capsids prepared using the NAGE-EE method are monodisperse with polydispersity values of ∼15% and ∼13%, respectively. ELISA proved that the antigenicity of the capsids was not affected in the purification process. Overall, NAGE-EE produced T = 3 and T = 4 capsids with a purity above 90%, and the recovery was 34% and 50%, respectively (total recovery of HBcAg is ∼84%), and the operation time is 15 and 4 times lesser than that of the sucrose density gradient ultracentrifugation and SEC, respectively.
    Matched MeSH terms: Escherichia coli/metabolism
  16. Yap CF, Tan WS, Sieo CC, Tey BT
    Biotechnol Prog, 2013 Mar-Apr;29(2):564-7.
    PMID: 23364925 DOI: 10.1002/btpr.1697
    NP(Δc375) is a truncated version of the nucleocapsid protein of Newcastle disease virus (NDV) which self-assembles into a long helical structure. A packed bed anion exchange chromatography (PB-AEC), SepFastTM Supor Q pre-packed column, was used to purify NP(Δc375) from clarified feedstock. This PB-AEC column adsorbed 76.2% of NP(Δc375) from the clarified feedstock. About 67.5% of the adsorbed NP(Δc375) was successfully eluted from the column by applying 50 mM Tris-HCl elution buffer supplemented with 0.5 M NaCl at pH 7. Thus, a recovery yield of 51.4% with a purity of 76.7% which corresponds to a purification factor of 6.5 was achieved in this PB-AEC operation. Electron microscopic analysis revealed that the helical structure of the NP(Δc375) purified by SepFast(TM) Supor Q pre-packed column was as long as 490 nm and 22-24 nm in diameter. The antigenicity of the purified NP(Δc375) was confirmed by enzyme-linked immunosorbent assay.
    Matched MeSH terms: Escherichia coli/metabolism
  17. Teo CY, Shave S, Chor AL, Salleh AB, Rahman MB, Walkinshaw MD, et al.
    BMC Bioinformatics, 2012;13 Suppl 17:S4.
    PMID: 23282142 DOI: 10.1186/1471-2105-13-S17-S4
    BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease with unknown etiology. Anticitrullinated protein autoantibody has been documented as a highly specific autoantibody associated with RA. Protein arginine deiminase type 4 (PAD4) is the enzyme responsible for catalyzing the conversion of peptidylarginine into peptidylcitrulline. PAD4 is a new therapeutic target for RA treatment. In order to search for inhibitors of PAD4, structure-based virtual screening was performed using LIDAEUS (Ligand discovery at Edinburgh university). Potential inhibitors were screened experimentally by inhibition assays.

    RESULTS: Twenty two of the top-ranked water-soluble compounds were selected for inhibitory screening against PAD4. Three compounds showed significant inhibition of PAD4 and their IC50 values were investigated. The structures of the three compounds show no resemblance with previously discovered PAD4 inhibitors, nor with existing drugs for RA treatment.

    CONCLUSION: Three compounds were discovered as potential inhibitors of PAD4 by virtual screening. The compounds are commercially available and can be used as scaffolds to design more potent inhibitors against PAD4.

    Matched MeSH terms: Escherichia coli/metabolism
  18. Rahman RN, Chin JH, Salleh AB, Basri M
    Mol Genet Genomics, 2003 May;269(2):252-60.
    PMID: 12756537
    A Bacillus sphaericus strain (205y) that produces an organic solvent-tolerant lipase was isolated in Port Dickson, Malaysia. The gene for the lipase was recovered from a genomic library and sequenced. Phylogenetic analysis was performed based on an alignment of thirteen microbial lipase sequences obtained from the NCBI database. The analysis suggested that the B. sphaericus lipase gene is a novel gene, as it is distinct from other lipase genes in Families I.4 and I.5 reported so far. Expression in Escherichia coli under the control of the lacZ promoter resulted in an eight-fold increase in enzyme activity after a 3-h induction with 1 mM IPTG. The crude enzyme thus obtained showed a slight (10%) enhancement in activity after a 30-min incubation in 25% (v/v) n-hexane at 37 degrees C, and retained 90% of its activity after a similar period in 25% (v/v) p-xylene.
    Matched MeSH terms: Escherichia coli/metabolism
  19. Vadivelu J, Feachem RG, Drasar BS, Harrison TJ, Parasakthi N, Thambypillai V, et al.
    Epidemiol Infect, 1989 Dec;103(3):497-511.
    PMID: 2691267
    The membrane-filter assay, GM1-ELISA, and DNA-DNA hybridization assay, were used to detect enterotoxigenic Escherichia coli (ETEC) in samples of water, weaning food, food preparation surface swabs, fingerprints of mothers, and the fingerprints and stools of children under 5 years of age, in 20 households in a Malaysian village. Weaning food and environmental samples were frequently contaminated by faecal coliforms, including ETEC. The membrane-filter assay detected and enumerated faecal coliforms and LT-ETEC in all types of water and weaning food samples. Highest concentrations of faecal coliforms and LT-ETEC were found in weaning food, followed by well-water, stored water and stored drinking water. The GM1-ELISA detected LT-ETEC in weaning food, food preparation surfaces, fingerprints and stool samples. The DNA-DNA hybridization assay detected a larger proportion of STa2-ETEC than the other toxotypes, either singly or in combination. All the assays in combination detected the presence of ETEC in all types of samples on at least one occasion in each household. It was not possible to classify households as consistently more or less contaminated with ETEC. On individual occasions it was possible to show a significant association of the presence of LT-ETEC between the fingerprints of children and their stools, fingerprints of mothers and children, and weaning food and the stools of the child consuming the food.
    Matched MeSH terms: Escherichia coli/metabolism
  20. Ali MS, Yun CC, Chor AL, Rahman RN, Basri M, Salleh AB
    Protein J, 2012 Mar;31(3):229-37.
    PMID: 22350313 DOI: 10.1007/s10930-012-9395-8
    A mutant of the lipase from Geobacillus sp. strain T1 with a phenylalanine to leucine substitution at position 16 was overexpressed in Escherichia coli strain BL21(De3)pLysS. The crude enzyme was purified by two-step affinity chromatography with a final recovery and specific activity of 47.4 and 6,315.8 U/mg, respectively. The molecular weight of the purified F16L lipase was approximately 43 kDa by 12% SDS-PAGE analysis. The F16L lipase was demonstrated to be a thermophilic enzyme due its optimum temperature at 70 °C and showed stability over a temperature range of 40-60 °C. The enzyme exhibited an optimum pH 7 in phosphate buffer and was relatively stable at an alkaline pH 8-9. Metal ions such as Ca(2+), Mn(2+), Na(+), and K(+) enhanced the lipase activity, but Mg(2+), Zn(2+), and Fe(2+) inhibited the lipase. All surfactants tested, including Tween 20, 40, 60, 80, Triton X-100, and SDS, significantly inhibited the lipolytic action of the lipase. A high hydrolytic rate was observed on long-chain natural oils and triglycerides, with a notable preference for olive oil (C18:1; natural oil) and triolein (C18:1; triglyceride). The F16L lipase was deduced to be a metalloenzyme because it was strongly inhibited by 5 mM EDTA. Moderate inhibition was observed in the presence of PMSF at a similar concentration, indicating that serine residues are involved in its catalytic action. Further, the activity was not impaired by water-miscible solvents, including methanol, ethanol, and acetone.
    Matched MeSH terms: Escherichia coli/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links