Displaying publications 81 - 100 of 450 in total

Abstract:
Sort:
  1. Rashid JIA, Kannan V, Ahmad MH, Mon AA, Taufik S, Miskon A, et al.
    Mater Sci Eng C Mater Biol Appl, 2021 Jan;120:111625.
    PMID: 33545813 DOI: 10.1016/j.msec.2020.111625
    Multidrug resistant Pseudomonas aeruginosa (P. aeruginosa) is known to be a problematic bacterium for being a major cause of opportunistic and nosocomial infections. In this study, reduced graphene oxide decorated with gold nanoparticles (AuNPs/rGO) was utilized as a new sensing material for a fast and direct electrochemical detection of pyocyanin as a biomarker of P. aeruginosa infections. Under optimal condition, the developed electrochemical pyocyanin sensor exhibited a good linear range for the determination of pyocyanin in phosphate-buffered saline (PBS), human saliva and urine at a clinically relevant concentration range of 1-100 μM, achieving a detection limit of 0.27 μM, 1.34 μM, and 2.3 μM, respectively. Our developed sensor demonstrated good selectivity towards pyocyanin in the presence of interfering molecule such as ascorbic acid, uric acid, NADH, glucose, and acetylsalicylic acid, which are commonly found in human fluids. Furthermore, the developed sensor was able to discriminate the signal with and without the presence of pyocyanin directly in P. aeruginosa culture. This proposed technique demonstrates its potential application in monitoring the presence of P. aeruginosa infection in patients.
    Matched MeSH terms: Metal Nanoparticles*
  2. Qamer S, Romli MH, Che-Hamzah F, Misni N, Joseph NMS, Al-Haj NA, et al.
    Molecules, 2021 Aug 20;26(16).
    PMID: 34443644 DOI: 10.3390/molecules26165057
    The biosynthesis of silver nanoparticles and the antibacterial activities has provided enormous data on populations, geographical areas, and experiments with bio silver nanoparticles' antibacterial operation. Several peer-reviewed publications have discussed various aspects of this subject field over the last generation. However, there is an absence of a detailed and structured framework that can represent the research domain on this topic. This paper attempts to evaluate current articles mainly on the biosynthesis of nanoparticles or antibacterial activities utilizing the scientific methodology of big data analytics. A comprehensive study was done using multiple databases-Medline, Scopus, and Web of Sciences through PRISMA (i.e., Preferred Reporting Items for Systematic Reviews and Meta-Analyses). The keywords used included 'biosynthesis silver nano particles' OR 'silver nanoparticles' OR 'biosynthesis' AND 'antibacterial behavior' OR 'anti-microbial opposition' AND 'systematic analysis,' by using MeSH (Medical Subject Headings) terms, Boolean operator's parenthesis, or truncations as required. Since their effectiveness is dependent on particle size or initial concentration, it necessitates more research. Understanding the field of silver nanoparticle biosynthesis and antibacterial activity in Gulf areas and most Asian countries also necessitates its use of human-generated data. Furthermore, the need for this work has been highlighted by the lack of predictive modeling in this field and a need to combine specific domain expertise. Studies eligible for such a review were determined by certain inclusion and exclusion criteria. This study contributes to the existence of theoretical and analytical studies in this domain. After testing as per inclusion criteria, seven in vitro studies were selected out of 28 studies. Findings reveal that silver nanoparticles have different degrees of antimicrobial activity based on numerous factors. Limitations of the study include studies with low to moderate risks of bias and antimicrobial effects of silver nanoparticles. The study also reveals the possible use of silver nanoparticles as antibacterial irrigants using various methods, including a qualitative evaluation of knowledge and a comprehensive collection and interpretation of scientific studies.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  3. Huang Y, Zhang L, Li Z, Gopinath SCB, Chen Y, Xiao Y
    Biotechnol Appl Biochem, 2021 Aug;68(4):881-888.
    PMID: 33245588 DOI: 10.1002/bab.2008
    17β-Estradiol-E2 (17β-E2) is a steroid hormone that plays a major role in the reproductive endocrine system and is involved in various processes, such as pregnancy, fertility, and menopause. In this study, the performance of an enzyme-linked immunosorbent assay (ELISA) for 17β-E2 quantification was enhanced by using a gold nanoparticle (GNP)-conjugated aptamer. An anti-17β-E2-aptamer-GNP antibody was immobilized on an amine-modified ELISA surface. Then, 17β-E2 was allowed to interact with and be sandwiched by antibodies. Aptamer-GNP conjugation was confirmed by colorimetric assays via the naked eye and UV-visible light spectroscopy. The detection limit based on a signal-to-noise ratio (S/N) of 3 was estimated to be 1.5 nM (400 pg/mL), and the linear range was 1.5-50 nM. Control experiments (without 17β-E2/with a complementary aptamer sequence/with a nonimmune antibody) confirmed the specific detection of 17β-E2. Moreover, 17β-E2 spiking of human serum did not interrupt the interaction between 17β-E2 and its antibody and aptamer. Thus, the developed ELISA can be used as an alternate assay for quantification of 17β-E2 and assessment of endocrine-related gynecological problems.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  4. Teow SY, Wong MM, Yap HY, Peh SC, Shameli K
    Molecules, 2018 06 06;23(6).
    PMID: 29882775 DOI: 10.3390/molecules23061366
    Nanoparticles (NPs) are nano-sized particles (generally 1⁻100 nm) that can be synthesized through various methods. The wide range of physicochemical characteristics of NPs permit them to have diverse biological functions. These particles are versatile and can be adopted into various applications, particularly in biomedical field. In the past five years, NPs’ roles in biomedical applications have drawn considerable attentions, and novel NPs with improved functions and reduced toxicity are continuously increasing. Extensive studies have been carried out in evaluating antibacterial potentials of NPs. The promising antibacterial effects exhibited by NPs highlight the potential of developing them into future generation of antimicrobial agents. There are various methods to synthesize NPs, and each of the method has significant implication on the biological action of NPs. Among all synthetic methods, green technology is the least toxic biological route, which is particularly suitable for biomedical applications. This mini-review provides current update on the antibacterial effects of NPs synthesized by green technology using plants. Underlying challenges in developing NPs into future antibacterials in clinics are also discussed at the present review.
    Matched MeSH terms: Metal Nanoparticles*
  5. New SY, Lee ST, Su XD
    Nanoscale, 2016 Oct 20;8(41):17729-17746.
    PMID: 27722695
    12 years after the introduction of DNA-templated silver nanoclusters (DNA-AgNCs), exciting progress has been made and yet we are still in the midst of trying to fully understand this nanomaterial. The prominent excellence of DNA-AgNCs is undoubtedly its modulatable emission property, of which how variation in DNA templates causes emission tuning remains elusive. Based on the up-to-date DNA-AgNCs, we aim to establish the correlation between the structure/sequence of DNA templates and emission behaviour of AgNCs. Herein, we systematically present a wide-range of DNA-AgNCs based on the structural complexity of the DNA templates, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), triple-stranded DNA (tsDNA) and DNA nanostructures. For each DNA category, we discuss the emission property, quantum yield and synthesis condition of the respective AgNCs, before cross-comparing the impact of different DNA scaffolds on the properties of AgNCs. A future outlook for this area is given as a conclusion. By putting the information together, this review may shed new light on understanding DNA-AgNCs while we are expecting continuous breakthroughs in this field.
    Matched MeSH terms: Metal Nanoparticles*
  6. Alim S, Vejayan J, Yusoff MM, Kafi AKM
    Biosens Bioelectron, 2018 Dec 15;121:125-136.
    PMID: 30205246 DOI: 10.1016/j.bios.2018.08.051
    The innovation of nanoparticles assumes a critical part of encouraging and giving open doors and conceivable outcomes to the headway of new era devices utilized as a part of biosensing. The focused on the quick and legitimate detecting of specific biomolecules using functionalized gold nanoparticles (Au NPs), and carbon nanotubes (CNTs) has turned into a noteworthy research enthusiasm for the most recent decade. Sensors created with gold nanoparticles or carbon nanotubes or in some cases by utilizing both are relied upon to change the very establishments of detecting and distinguishing various analytes. In this review, we will examine the current utilization of functionalized AuNPs and CNTs with other synthetic mixes for the creation of biosensor prompting to the location of particular analytes with low discovery cutoff and quick reaction.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  7. Patsiou D, Del Rio-Cubilledo C, Catarino AI, Summers S, Mohd Fahmi A, Boyle D, et al.
    Sci Total Environ, 2020 May 01;715:136941.
    PMID: 32041050 DOI: 10.1016/j.scitotenv.2020.136941
    Lead-halide perovskite nanoparticles (NPs) are a new technology, and investigation of toxicity is of considerable importance due to the potential lead (Pb) release into the environment. The aim of the study was to investigate aqueous and dietary toxicity of Pb-halide perovskite NP and Pb in zebrafish Danio rerio. Perovskite NP toxicity was evaluated in zebrafish by mortality, gene expression, histopathology, and phylogenetic analysis of gut microbiota. Zebrafish larvae were exposed to five Pb-halide perovskite NPs in parallel with Pb(NO3)2 exposures, and zebrafish adults were exposed to the three perovskite NPs that caused the strongest effect and Pb(NO3)2. No median lethal concentration (LC50) was observed for zebrafish larvae exposed to up to 200 mg/L of perovskite NPs for 96 h. Mortality, metallothionein 2 (mt2) and δ-aminolevulinic acid dehydratase (ala-d) gene expression (24-h exposure) in zebrafish larvae after aqueous perovskite NPs exposures did not differ from total Pb concentration - response curves. The lack of differences in mortality and gene expression between perovskite NPs and soluble Pb after aqueous exposure suggest that toxicity from perovskite NPs can be attributed to bioavailable Pb rather than nano-specific effects. Induction of mt2 and reduction of ala-d expression levels in liver tissues showed Pb bioavailability after 2-d and 4-d dietary exposure to perovskite-spiked feeds. Changes in gut microbiota of adult zebrafish were detected after 14-d exposure to Pb-spiked food, but no changes were detected from perovskite-NP spiked food. The phylogenetic analysis identified different microbiome profiles of Pb-fed fish compared to perovskite-fed fish suggesting a different mechanism of toxicity. Exposure to Pb-halide perovskite NPs led to absorption of Pb likely from release of Pb ions rather than absorption of NPs. Pb-halide perovskite NPs can release bioavailable Pb and this needs to be considered during the development of this technology.
    Matched MeSH terms: Metal Nanoparticles*
  8. Aghalari Z, Dahms HU, Sillanpää M
    Life Sci Soc Policy, 2021 Sep 13;17(1):8.
    PMID: 34511108 DOI: 10.1186/s40504-021-00116-8
    OBJECTIVE: The use of nanotechnologies is important to reduce environmental health problems in Iran, so the present study was conducted to determine the effectiveness of nanotechnologies in environmental health. This is a cross-sectional descriptive study for 11-year periods (2008-2018) on all articles published in three specialized journals of environmental health with emphasis on the use of nanotechnologies in various fields of environmental health (water, air, sewage, waste, food, radiation, etc).

    RESULTS: In this study, 774 articles related to 114 issues of 3 specialized environmental health journals were reviewed. A review of 774 articles showed that 80 articles (10.3%) were published in the field of nanotechnologies. Out of 80 articles published in the field of nanotechnology, 66 articles (82.5%) were published on the subject of water, 9 articles (11.3%) on wastewater and 5 articles (6.2%) on air pollution. Subject review of articles showed that articles using carbon nanotubes to remove natural organic pollutants, surfactants, hydroxybenzenes, phenol, dimethyl phthalates, use of titanium dioxide nanoparticles, iron-magnesium nanoparticles for wastewater treatment, Silver nanoparticles were used to remove air pollution. The results showed that published articles on nanotechnology in the field of environmental health were few.

    Matched MeSH terms: Metal Nanoparticles*
  9. Ariffin EY, Zakariah EI, Ruslin F, Kassim M, Yamin BM, Heng LY, et al.
    Sci Rep, 2021 04 12;11(1):7883.
    PMID: 33846405 DOI: 10.1038/s41598-021-86939-z
    Ferrocene or ferrocenium has been widely studied in the field of organometallic complexes because of its stable thermodynamic, kinetic and redox properties. Novel hexaferrocenium tri[hexa(isothiocyanato)iron(III)]trihydroxonium (HexaFc) complex was the product from the reaction of ferrocene, maleic acid and ammonium thiocyanate and was confirmed by elemental analysis CHNS, FTIR and single crystal X-ray crystallography. In this study, HexaFc was used for the first time as an electroactive indicator for porcine DNA biosensor. The UV-Vis DNA titrations with this compound showed hypochromism and redshift at 250 nm with increasing DNA concentrations. The binding constant (Kb) for HexaFc complex towards CT-DNA (calf-thymus DNA) was 3.1 × 104 M-1, indicated intercalator behaviour of the complex. To test the usefulness of this complex for DNA biosensor application, a porcine DNA biosensor was constructed. The recognition probes were covalently immobilised onto silica nanospheres (SiNSs) via glutaraldehyde linker on a screen-printed electrode (SPE). After intercalation with the HexaFc complex, the response of the biosensor to the complementary porcine DNA was measured using differential pulse voltammetry. The DNA biosensor demonstrated a linear response range to the complementary porcine DNA from 1 × 10-6 to 1 × 10-3 µM (R2 = 0.9642) with a limit detection of 4.83 × 10-8 µM and the response was stable up to 23 days of storage at 4 °C with 86% of its initial response. The results indicated that HexaFc complex is a feasible indicator for the DNA hybridisation without the use of a chemical label for the detection of porcine DNA.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  10. Ali SG, Jalal M, Ahmad H, Umar K, Ahmad A, Alshammari MB, et al.
    Molecules, 2022 Dec 08;27(24).
    PMID: 36557818 DOI: 10.3390/molecules27248685
    Antimicrobial resistance has posed a serious health concern worldwide, which is mainly due to the excessive use of antibiotics. In this study, gold nanoparticles synthesized from the plant Tinospora cordifolia were used against multidrug-resistant Pseudomonas aeruginosa. The active components involved in the reduction and stabilization of gold nanoparticles were revealed by gas chromatography-mass spectrophotometry(GC-MS) of the stem extract of Tinospora cordifolia. Gold nanoparticles (TG-AuNPs) were effective against P. aeruginosa at different concentrations (50,100, and 150 µg/mL). TG-AuNPs effectively reduced the pyocyanin level by 63.1% in PAO1 and by 68.7% in clinical isolates at 150 µg/mL; similarly, swarming and swimming motilities decreased by 53.1% and 53.8% for PAO1 and 66.6% and 52.8% in clinical isolates, respectively. Biofilm production was also reduced, and at a maximum concentration of 150 µg/mL of TG-AuNPs a 59.09% reduction inPAO1 and 64.7% reduction in clinical isolates were observed. Lower concentrations of TG-AuNPs (100 and 50 µg/mL) also reduced the pyocyanin, biofilm, swarming, and swimming. Phenotypically, the downregulation of exopolysaccharide secretion from P. aeruginosa due to TG-AuNPs was observed on Congo red agar plates.
    Matched MeSH terms: Metal Nanoparticles*
  11. Nagaraja S, Ahmed SS, D R B, Goudanavar P, M RK, Fattepur S, et al.
    Molecules, 2022 Jul 06;27(14).
    PMID: 35889209 DOI: 10.3390/molecules27144336
    Diabetes mellitus (DM) and its complications are a severe public health concern due to the high incidence, morbidity, and mortality rates. The present study aims to synthesize and characterize silver nanoparticles (AgNPs) using the aqueous leaf extract of Psidium guajava (PGE) for investigating its antidiabetic activity. Psidium guajava silver nanoparticles (PGAg NPs) were prepared and characterized by various parameters. The in vivo study was conducted using PGE and PGAg NPs in Streptozotocin (STZ)-induced diabetic rats to assess their antidiabetic properties. STZ of 55 mg/kg was injected to induce diabetes. The PGE, PGAg NPs at a dose of 200 and 400 mg/kg and standard drug Metformin (100 mg/kg) were administered daily to diabetic rats for 21 days through the oral route. Blood glucose level, body weight changes, lipid profiles, and histopathology of the rats' liver and pancreas were examined. In the diabetic rats, PGE and PGAg NPs produced a drastic decrease in the blood glucose level, preventing subsequent weight loss and ameliorating lipid profile parameters. The histopathological findings revealed the improvements in pancreas and liver cells due to the repercussion of PGE and PGAg NPs. A compelling effect was observed in all doses of PGE and PGAg NPs; however, PGAg NPs exhibited a more promising result. Thus, from the results, it is concluded that the synthesized PGAg NPs has potent antidiabetic activity due to its enhanced surface area and smaller particle size of nanoparticles.
    Matched MeSH terms: Metal Nanoparticles*
  12. Akhtar K, Ali F, Sohni S, Kamal T, Asiri AM, Bakhsh EM, et al.
    Environ Sci Pollut Res Int, 2020 Jan;27(1):823-836.
    PMID: 31811610 DOI: 10.1007/s11356-019-06908-y
    Lignocellulosic biomass waste is a cheap, eco-friendly, and sustainable raw material for a wide array of applications. In the present study, an easy, fast, and economically feasible route has been proposed for the preparation of different zero-valent metal nanoparticles (ZV-MNPs) based on Cu, Co, Ag, and Ni NPs using empty fruit bunch (EFB) biomass residue as support material. The catalytic efficiency of ZV-MNPs/EFB catalyst was investigated against five model pollutants, such as methyl orange (MO), congo red (CR), methylene blue (MB), acridine orange (AO), and 4-nitrophenol (4-NP) using NaBH4 as a source of hydrogen and electron. Comparative study revealed that among as-prepared ZV-MNPs/EFB catalysts, Cu-NPs immobilized onto EFB (Cu/EFB) exhibited maximum catalytic efficiency towards pollutant abasement. Degradation reactions were highly efficient, and were completed within a short time (4 min) in case of MO, CR, and MB, whilst AO and 4-NP were reduced in less than 15 min. Kinetic investigation revealed that the degradation rate of model pollutants accorded with pseudo-first order model. Furthermore, supported catalysts were easily recovered after the completion of experiment by simply pulling the catalyst from reaction system. Recyclability tests performed on Cu/EFB revealed that more than 97% of the reduction was achieved in case of MO dye for four successive cycles of reuse. The as-prepared heterostructure showed multifunctional properties, such as enhanced uptake of contaminants, high catalytic efficiency, and easy recovery, hence, offers great prospects in wastewater purification.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  13. Hui H, Gopinath SCB, Ismail ZH, Chen Y, Pandian K, Velusamy P
    Biotechnol Appl Biochem, 2023 Apr;70(2):581-591.
    PMID: 35765758 DOI: 10.1002/bab.2380
    Myocardial infarction (MI) is highly related to cardiac arrest leading to death and organ damage. Radiological techniques and electrocardiography have been used as preliminary tests to diagnose MI; however, these techniques are not sensitive enough for early-stage detection. A blood biomarker-based diagnosis is an immediate solution, and due to the high correlation of troponin with MI, it has been considered to be a gold-standard biomarker. In the present research, the cardiac biomarker troponin I (cTnI) was detected on an interdigitated electrode sensor with various surface interfaces. To detect cTnI, a capture aptamer-conjugated gold nanoparticle probe and detection antibody probe were utilized and compared through an alternating sandwich pattern. The surface metal oxide morphology of the developed sensor was proven by microscopic assessments. The limit of detection with the aptamer-gold-cTnI-antibody sandwich pattern was 100 aM, while it was 1 fM with antibody-gold-cTnI-aptamer, representing 10-fold differences. Further, the high performance of the sensor was confirmed by selective cTnI determination in serum, exhibiting superior nonfouling. These methods of determination provide options for generating novel assays for diagnosing MI.
    Matched MeSH terms: Metal Nanoparticles*
  14. Ghadiry M, Gholami M, Lai CK, Ahmad H, Chong WY
    PLoS One, 2016;11(4):e0153949.
    PMID: 27101247 DOI: 10.1371/journal.pone.0153949
    Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  15. Jaapar FN, Parmin NA, Halim NHA, Hashim U, Gopinath SCB, Halim FS, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 2):126745.
    PMID: 37689297 DOI: 10.1016/j.ijbiomac.2023.126745
    Genosensor-based electrodes mediated with nanoparticles (NPs) have tremendously developed in medical diagnosis. Herein, we report a facile, rapid, low cost and highly sensitive biosensing strategy for early detection of HPV 18 using gold-nanoparticles (AuNPs) deposited on micro-IDEs. This study represents surface charge transduction of micro-interdigitated electrodes (micro-IDE) alumina insulated with silica, independent and mini genosensor modified with colloidal gold NPs (AuNPs), and determination of gene hybridization for early detection of cervical cancer. The surface of AuNPs deposited micro-IDE functionalized with optimized 3-aminopropyl-triethoxysilane (APTES) followed by hybridization with deoxyribonucleic acid (DNA) virus to develop DNA genosensor. The results of ssDNA hybridization with the ssDNA target of human papillomavirus (HPV) 18 have affirmed that micro-IDE functionalized with colloidal AuNPs resulted in the lowest detection at 0.529 aM. Based on coefficient regression, micro-IDE functionalized with AuNPs produces better results in the sensitivity test (R2 = 0.99793) than unfunctionalized micro-IDE.
    Matched MeSH terms: Metal Nanoparticles*
  16. Ghadin N, Yusof NAM, Syarul Nataqain B, Raston NHA, Low CF
    J Fish Dis, 2024 Feb;47(2):e13892.
    PMID: 38014615 DOI: 10.1111/jfd.13892
    The giant freshwater prawn holds a significant position as a valuable crustacean species cultivated in the aquaculture industry, particularly well-known and demanded among the Southeast Asian countries. Aquaculture production of this species has been impacted by Macrobrachium rosenbergii nodavirus (MrNV) infection, which particularly affects the larvae and post-larvae stages of the prawn. The infection has been recorded to cause mortality rates of up to 100% among the affected prawns. A simple, fast, and easy to deploy on-site detection or diagnostic method is crucial for early detection of MrNV to control the disease outbreak. In the present study, novel single-stranded DNA aptamers targeting the MrNV capsid protein were identified using the systematic evolution of ligands by exponential enrichment (SELEX) approach. The aptamer was then conjugated with the citrate-capped gold nanoparticles (AuNPs), and the sensitivity of this AuNP-based aptasensor for the detection of MrNV capsid protein was evaluated. Findings revealed that the aptamer candidate, APT-MrNV-CP-1 was enriched throughout the SELEX cycle 4, 9, and 12 with the sequence percentage of 1.76%, 9.09%, and 12.42%, respectively. The conjugation of APT-MrNV-CP-1 with citrate-capped AuNPs exhibited the highest sensitivity in detecting the MrNV capsid protein, where the presence of 62.5 nM of the viral capsid protein led to a significant agglomeration of the AuNPs. This study demonstrated the practicality of an AuNP-based aptasensor for disease diagnosis, particularly for detecting MrNV infection in giant freshwater prawns.
    Matched MeSH terms: Metal Nanoparticles*
  17. Mustapa MA, Yuzir A, Latif AA, Ambran S, Abdullah N
    PMID: 38310743 DOI: 10.1016/j.saa.2024.123977
    A rapid, simple, sensitive, and selective point-of-care diagnosis tool kit is vital for detecting the coronavirus disease (COVID-19) based on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain. Currently, the reverse transcriptase-polymerase chain reaction (RT-PCR) is the best technique to detect the disease. Although a good sensitivity has been observed in RT-PCR, the isolation and screening process for high sample volume is limited due to the time-consuming and laborious work. This study introduced a nucleic acid-based surface-enhanced Raman scattering (SERS) sensor to detect the nucleocapsid gene (N-gene) of SARS-CoV-2. The Raman scattering signal was amplified using gold nanoparticles (AuNPs) possessing a rod-like morphology to improve the SERS effect, which was approximately 12-15 nm in diameter and 40-50 nm in length. These nanoparticles were functionalised with the single-stranded deoxyribonucleic acid (ssDNA) complemented with the N-gene. Furthermore, the study demonstrates method selectivity by strategically testing the same virus genome at different locations. This focused approach showcases the method's capability to discern specific genetic variations, ensuring accuracy in viral detection. A multivariate statistical analysis technique was then applied to analyse the raw SERS spectra data using the principal component analysis (PCA). An acceptable variance amount was demonstrated by the overall variance (82.4 %) for PC1 and PC2, which exceeded the desired value of 80 %. These results successfully revealed the hidden information in the raw SERS spectra data. The outcome suggested a more significant thymine base detection than other nitrogenous bases at wavenumbers 613, 779, 1219, 1345, and 1382 cm-1. Adenine was also less observed at 734 cm-1, and ssDNA-RNA hybridisations were presented in the ketone with amino base SERS bands in 1746, 1815, 1871, and 1971 cm-1 of the fingerprint. Overall, the N-gene could be detected as low as 0.1 nM within 10 mins of incubation time. This approach could be developed as an alternative point-of-care diagnosis tool kit to detect and monitor the COVID-19 disease.
    Matched MeSH terms: Metal Nanoparticles*
  18. Indumathi T, Kumaresan I, Suriyaprakash J, Alarfaj AA, Hirad AH, Jaganathan R, et al.
    J Basic Microbiol, 2024 Feb;64(2):e2300494.
    PMID: 37988661 DOI: 10.1002/jobm.202300494
    Globally, cancer is the leading cause of death and morbidity, and skin cancer is the most common cancer diagnosis. Skin problems can be treated with nanoparticles (NPs), particularly with zinc oxide (ZnO) NPs, which have antioxidant, antibacterial, anti-inflammatory, and anticancer properties. An antibacterial activity of zinc oxide nanoparticles prepared in the presence of 4-nitrobenzaldehyde (4NB) was also tested in the present study. In addition, the influence of synthesized NPs on cell apoptosis, cell viability, mitochondrial membrane potential (MMP), endogenous reactive oxygen species (ROS) production, apoptosis, and cell adhesion was also examined. The synthesized 4-nitro benzaldehyde with ZnO (4NBZnO) NPs were confirmed via characterization techniques. 4NBZnO NPs showed superior antibacterial properties against the pathogens tested in antibacterial investigations. As a result of dose-based treatment with 4NBZnO NPs, cell viability, and MMP activity of melanoma cells (SK-MEL-3) cells were suppressed. A dose-dependent accumulation of ROS was observed in cells exposed to 4NBZnO NPs. As a result of exposure to 4NBZnO NPs in a dose-dependent manner, viable cells declined and apoptotic cells increased. This indicates that apoptotic cell death was higher. The cell adhesion test revealed that 4NBZnO NPs reduced cell adhesion and may promote apoptosis of cancer cells because of enhanced ROS levels.
    Matched MeSH terms: Metal Nanoparticles*
  19. Karim Z, Adnan R, Ansari MS
    PLoS One, 2012;7(7):e41422.
    PMID: 22848490 DOI: 10.1371/journal.pone.0041422
    Chemical synthesis of Ag-NPs was carried out using reduction method. The reduction mechanistic approach of silver ions was found to be a basic clue for the formation of the Ag-NPs. The nanoparticles were characterized by UV-vis, FT-IR and TEM analysis. We had designed some experiments in support of our hypothesis, "low concentrations of novel nanoparticles (silver and gold) increases the activity of plant peroxidases and alter their structure also", we had used Ag-NPs and HRP as models. The immobilization/interaction experiment had demonstrated the specific concentration range of the Ag-NPs and within this range, an increase in HRP activity was reported. At 0.08 mM concentration of Ag-NPs, 50% increase in the activity yield was found. The U.V-vis spectra had demonstrated the increase in the absorbance of HRP within the reported concentration range (0.06-0.12 mM). Above and below this concentration range there was a decrease in the activity of HRP. The results that we had found from the fluorescence spectra were also in favor of our hypothesis. There was a maximum increase in ellipticity and α-helix contents in the presence of 0.08 mM concentration of Ag-NPs, demonstrated by circular dichroism (CD) spectra. Finally, incubation of a plant peroxidase, HRP with Ag-NPs, within the reported concentration range not only enhances the activity but also alter the structure.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  20. Abedini A, Daud AR, Abdul Hamid MA, Kamil Othman N, Saion E
    Nanoscale Res Lett, 2013;8(1):474.
    PMID: 24225302 DOI: 10.1186/1556-276X-8-474
    This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation and growth process in the formation of nanoparticles can determine the size of nanoparticles which is influenced by certain parameters such as the choice of solvents and stabilizer, the precursor to stabilizer ratio, pH during synthesis, and absorbed dose.
    Matched MeSH terms: Metal Nanoparticles
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links