Displaying publications 81 - 100 of 990 in total

Abstract:
Sort:
  1. Mustafa MF, Fakurazi S, Abdullah MA, Maniam S
    Genes (Basel), 2020 02 12;11(2).
    PMID: 32059522 DOI: 10.3390/genes11020192
    Mitochondria are best known for their role in energy production, and they are the only mammalian organelles that contain their own genomes. The mitochondrial genome mutation rate is reported to be 10-17 times higher compared to nuclear genomes as a result of oxidative damage caused by reactive oxygen species during oxidative phosphorylation. Pathogenic mitochondrial DNA mutations result in mitochondrial DNA disorders, which are among the most common inherited human diseases. Interventions of mitochondrial DNA disorders involve either the transfer of viable isolated mitochondria to recipient cells or genetically modifying the mitochondrial genome to improve therapeutic outcome. This review outlines the common mitochondrial DNA disorders and the key advances in the past decade necessary to improve the current knowledge on mitochondrial disease intervention. Although it is now 31 years since the first description of patients with pathogenic mitochondrial DNA was reported, the treatment for mitochondrial disease is often inadequate and mostly palliative. Advancements in diagnostic technology improved the molecular diagnosis of previously unresolved cases, and they provide new insight into the pathogenesis and genetic changes in mitochondrial DNA diseases.
    Matched MeSH terms: Mutation; Mutation Rate
  2. Kee BP, Chua KH, Lee PC, Lian LH
    Ann Hum Biol, 2012 Nov-Dec;39(6):505-10.
    PMID: 22989108 DOI: 10.3109/03014460.2012.719548
    The present study is the first to report the genetic relatedness of indigenous populations of Sabah, Malaysia, using a set of Indel markers (HS4.32, TPA25, APO, PV92, B65 and HS3.23). The primary aim was to assess the genetic relationships among these populations and with populations from other parts of the world by examining the distribution of these markers.
    Matched MeSH terms: INDEL Mutation*
  3. Adedze YMN, Lu X, Xia Y, Sun Q, Nchongboh CG, Alam MA, et al.
    Sci Rep, 2021 02 16;11(1):3872.
    PMID: 33594240 DOI: 10.1038/s41598-021-83313-x
    Insertion and Deletion (InDel) are common features in genomes and are associated with genetic variation. The whole-genome re-sequencing data from two parents (X1 and X2) of the elite cucumber (Cucumis sativus) hybrid variety Lvmei No.1 was used for genome-wide InDel polymorphisms analysis. Obtained sequence reads were mapped to the genome reference sequence of Chinese fresh market type inbred line '9930' and gaps conforming to InDel were pinpointed. Further, the level of cross-parents polymorphism among five pairs of cucumber breeding parents and their corresponding hybrid varieties were used for evaluating hybrid seeds purity test efficiency of InDel markers. A panel of 48 cucumber breeding lines was utilized for PCR amplification versatility and phylogenetic analysis of these markers. In total, 10,470 candidate InDel markers were identified for X1 and X2. Among these, 385 markers with more than 30 nucleotide difference were arbitrary chosen. These markers were selected for experimental resolvability through electrophoresis on an Agarose gel. Two hundred and eleven (211) accounting for 54.81% of markers could be validated as single and clear polymorphic pattern while 174 (45.19%) showed unclear or monomorphic genetic bands between X1 and X2. Cross-parents polymorphism evaluation recorded 68 (32.23%) of these markers, which were designated as cross-parents transferable (CPT) InDel markers. Interestingly, the marker InDel114 presented experimental transferability between cucumber and melon. A panel of 48 cucumber breeding lines including parents of Lvmei No. 1 subjected to PCR amplification versatility using CPT InDel markers successfully clustered them into fruit and common cucumber varieties based on phylogenetic analysis. It is worth noting that 16 of these markers were predominately associated to enzymatic activities in cucumber. These agarose-based InDel markers could constitute a valuable resource for hybrid seeds purity testing, germplasm classification and marker-assisted breeding in cucumber.
    Matched MeSH terms: INDEL Mutation*
  4. Chear CT, Nallusamy R, Chan KC, Mohd Tap R, Baharin MF, Syed Yahya SNH, et al.
    J Clin Immunol, 2021 08;41(6):1178-1186.
    PMID: 33713249 DOI: 10.1007/s10875-021-01017-3
    X-linked agammaglobulinemia is a rare primary immunodeficiency due to a BTK mutation. The patients are characteristically deficient in peripheral B cells and serum immunoglobulins. While they are susceptible to infections caused by bacteria, enteroviruses, and parasites, fungal infections are uncommon in XLA patients. Here, we report a boy of Malay ethnicity who suffered from recurrent upper respiratory tract infections and severe progressive necrotizing fasciitis caused by Saksenaea erythrospora. Immunological tests showed a B cell deficiency and hypogammaglobulinemia. Whole-exome sequencing identified a dinucleotide deletion (c.1580_1581del) in BTK, confirmed by Sanger sequencing and predicted to be disease causing by in silico functional prediction tools (Varsome and MutationTaster2) but was absent in the gnomAD database. This mutation resulted in a frameshift and premature termination (p.C527fs), which disrupted the protein structure. The mother was heterozygous at the mutation site, confirming her carrier status. Flow cytometric analysis of monocyte BTK expression showed it to be absent in the patient and bimodal in the mother. This study describes a novel BTK mutation in a defined hotspot and an atypical fungal phenotype in XLA. Further studies are required to understand the pathogenesis of fungal infection in XLA.
    Matched MeSH terms: Mutation/genetics
  5. Zakaria Z, Othman N, Ismail A, Kamaluddin NR, Esa E, Abdul Rahman EJ, et al.
    Asian Pac J Cancer Prev, 2017 04 01;18(4):1169-1175.
    PMID: 28548470
    Background: ETV6/RUNX1 gene fusion is the most frequently seen chromosomal abnormality in childhood acute
    lymphobastic leukamia (ALL). However, additional genetic changes are known to be required for the development of
    this type of leukaemia. Therefore, we here aimed to assess the somatic mutational profile of four ALL cases carrying the
    ETV6/RUNX1 fusion gene using whole-exome sequencing. Methods: DNA was isolated from bone marrow samples
    using a QIAmp DNA Blood Mini kit and subsequently sequenced using the Illumina MiSeq system. Results: We
    identified 12,960 to17,601 mutations in each sample, with a total of 16,466 somatic mutations in total. Some 15,533
    variants were single nucleotide polymorphisms (SNPs), 129 were substitutions, 415 were insertions and 389 were
    deletions. When taking into account the coding region and protein impact, 1,875 variants were synonymous and 1,956
    were non-synonymous SNPs. Among non-synonymous SNPs, 1,862 were missense, 13 nonsense, 35 frameshifts, 11
    nonstop, 3 misstart, 15 splices disrupt and 17 in-frame indels. A total of 86 variants were located in leukaemia-related
    genes of which 32 variants were located in the coding regions of GLI2, SP140, GATA2, SMAD5, KMT2C, CDH17,
    CDX2, FLT3, PML and MOV10L1. Conclusions: Detection and identification of secondary genetic alterations are
    important in identifying new therapeutic targets and developing rationally designed treatment regimens with less
    toxicity in ALL patients.
    Matched MeSH terms: Mutation; INDEL Mutation
  6. Ng HF, Ngeow YF
    Microb Drug Resist, 2023 Feb;29(2):41-46.
    PMID: 36802272 DOI: 10.1089/mdr.2022.0068
    Linezolid is one of the antibiotics used to treat the Mycobacteroides abscessus infection. However, linezolid-resistance mechanisms of this organism are not well understood. The objective of this study was to identify possible linezolid-resistance determinants in M. abscessus through characterization of step-wise mutants selected from a linezolid-susceptible strain, M61 (minimum inhibitory concentration [MIC]: 0.25 mg/L). Whole-genome sequencing and subsequent PCR verification of the resistant second-step mutant, A2a(1) (MIC: >256 mg/L), revealed three mutations in its genome, two of which were found in the 23S rDNA (g2244t and g2788t) and another one was found in a gene encoding the fatty-acid-CoA ligase FadD32 (c880t→H294Y). The 23S rRNA is the molecular target of linezolid and mutations in this gene are likely to contribute to resistance. Furthermore, PCR analysis revealed that the c880t mutation in the fadD32 gene first appeared in the first-step mutant, A2 (MIC: 1 mg/L). Complementation of the wild-type M61 with the pMV261 plasmid carrying the mutant fadD32 gene caused the previously sensitive M61 to develop a reduced susceptibility to linezolid (MIC: 1 mg/L). The findings of this study uncovered hitherto undescribed mechanisms of linezolid resistance in M. abscessus that may be useful for the development of novel anti-infective agents against this multidrug-resistant pathogen.
    Matched MeSH terms: Mutation/genetics
  7. Rozitah R, Nizam MZ, Nur Shafawati AR, Nor Atifah MA, Dewi M, Kannan TP, et al.
    Singapore Med J, 2008 Dec;49(12):1046-9.
    PMID: 19122960
    Beta-thalassaemia major is an autosomal recessive disorder that results in severe microcytic, hypochromic, haemolytic anaemia among affected patients. Beta-thalassaemia has emerged as one of the most common public health problems in Malaysia, particularly among Malaysian Chinese and Malays. This study aimed to observe the spectrum of mutations found in Kelantan Malay beta-thalassaemia major patients who attended the Paediatrics Daycare Unit, Hospital Universiti Sains Malaysia, Kelantan, Malaysia, the data of which was being used in establishing the prenatal diagnosis in this Human Genome Centre.
    Matched MeSH terms: Mutation*
  8. Zilfalil BA, Sarina S, Liza-Sharmini AT, Oldfield NJ, Stenhouse SA
    Singapore Med J, 2006 Feb;47(2):129-33.
    PMID: 16435054
    Cystic fibrosis (CF) is one of the common genetic disorders in the western world. It has been reported to be very rare in Asian populations. According to the Cystic Fibrosis Genetic Analysis Consortium, more than 1,000 mutations of the CF gene have been identified. The CF gene, named the cystic fibrosis transmembrane conductance regulator (CFTR), is located on chromosome 7 and composed of 27 exons. This study aims to detect possible CFTR gene mutations in Malays.
    Matched MeSH terms: Mutation*
  9. Roos A, van der Ven PFM, Alrohaif H, Kölbel H, Heil L, Della Marina A, et al.
    Brain, 2023 Oct 03;146(10):4200-4216.
    PMID: 37163662 DOI: 10.1093/brain/awad152
    Filamin-A-interacting protein 1 (FILIP1) is a structural protein that is involved in neuronal and muscle function and integrity and interacts with FLNa and FLNc. Pathogenic variants in filamin-encoding genes have been linked to neurological disorders (FLNA) and muscle diseases characterized by myofibrillar perturbations (FLNC), but human diseases associated with FILIP1 variants have not yet been described. Here, we report on five patients from four unrelated consanguineous families with homozygous FILIP1 variants (two nonsense and two missense). Functional studies indicated altered stability of the FILIP1 protein carrying the p.[Pro1133Leu] variant. Patients exhibit a broad spectrum of neurological symptoms including brain malformations, neurodevelopmental delay, muscle weakness and pathology and dysmorphic features. Electron and immunofluorescence microscopy on the muscle biopsy derived from the patient harbouring the homozygous p.[Pro1133Leu] missense variant revealed core-like zones of myofibrillar disintegration, autophagic vacuoles and accumulation of FLNc. Proteomic studies on the fibroblasts derived from the same patient showed dysregulation of a variety of proteins including FLNc and alpha-B-crystallin, a finding (confirmed by immunofluorescence) which is in line with the manifestation of symptoms associated with the syndromic phenotype of FILIP1opathy. The combined findings of this study show that the loss of functional FILIP1 leads to a recessive disorder characterized by neurological and muscular manifestations as well as dysmorphic features accompanied by perturbed proteostasis and myopathology.
    Matched MeSH terms: Mutation/genetics
  10. Ang BH, Ho WK, Wijaya E, Kwan PY, Ng PS, Yoon SY, et al.
    J Clin Oncol, 2022 May 10;40(14):1542-1551.
    PMID: 35143328 DOI: 10.1200/JCO.21.01647
    PURPOSE: With the development of poly (ADP-ribose) polymerase inhibitors for treatment of patients with cancer with an altered BRCA1 or BRCA2 gene, there is an urgent need to ensure that there are appropriate strategies for identifying mutation carriers while balancing the increased demand for and cost of cancer genetics services. To date, the majority of mutation prediction tools have been developed in women of European descent where the age and cancer-subtype distributions are different from that in Asian women.

    METHODS: In this study, we built a new model (Asian Risk Calculator) for estimating the likelihood of carrying a pathogenic variant in BRCA1 or BRCA2 gene, using germline BRCA genetic testing results in a cross-sectional population-based study of 8,162 Asian patients with breast cancer. We compared the model performance to existing mutation prediction models. The models were evaluated for discrimination and calibration.

    RESULTS: Asian Risk Calculator included age of diagnosis, ethnicity, bilateral breast cancer, tumor biomarkers, and family history of breast cancer or ovarian cancer as predictors. The inclusion of tumor grade improved significantly the model performance. The full model was calibrated (Hosmer-Lemeshow P value = .614) and discriminated well between BRCA and non-BRCA pathogenic variant carriers (area under receiver operating curve, 0.80; 95% CI, 0.75 to 0.84). Addition of grade to the existing clinical genetic testing criteria targeting patients with breast cancer age younger than 45 years reduced the proportion of patients referred for genetic counseling and testing from 37% to 33% (P value = .003), thereby improving the overall efficacy.

    CONCLUSION: Population-specific customization of mutation prediction models and clinical genetic testing criteria improved the accuracy of BRCA mutation prediction in Asian patients.

    Matched MeSH terms: Mutation; Germ-Line Mutation
  11. Tay YW, Tan AH, Lim JL, Lohmann K, Ibrahim KA, Abdul Aziz Z, et al.
    Parkinsonism Relat Disord, 2023 Jun;111:105399.
    PMID: 37209484 DOI: 10.1016/j.parkreldis.2023.105399
    BACKGROUND: About 5-10% of Parkinson's disease (PD) cases are early onset (EOPD), with several genes implicated, including GBA1, PRKN, PINK1, and SNCA. The spectrum and frequency of mutations vary across populations and globally diverse studies are crucial to comprehensively understand the genetic architecture of PD. The ancestral diversity of Southeast Asians offers opportunities to uncover a rich PD genetics landscape, and identify common regional mutations and new pathogenic variants.

    OBJECTIVES: This study aimed to investigate the genetic architecture of EOPD in a multi-ethnic Malaysian cohort.

    METHODS: 161 index patients with PD onset ≤50 years were recruited from multiple centers across Malaysia. A two-step approach to genetic testing was used, combining a next-generation sequencing-based PD gene panel and multiplex ligation-dependent probe amplification (MLPA).

    RESULTS: Thirty-five patients (21.7%) carried pathogenic or likely pathogenic variants involving (in decreasing order of frequency): GBA1, PRKN, PINK1, DJ-1, LRRK2, and ATP13A2. Pathogenic/likely pathogenic variants in GBA1 were identified in thirteen patients (8.1%), and were also commonly found in PRKN and PINK1 (11/161 = 6.8% and 6/161 = 3.7%, respectively). The overall detection rate was even higher in those with familial history (48.5%) or age of diagnosis ≤40 years (34.8%). PRKN exon 7 deletion and the PINK1 p.Leu347Pro variant appear to be common among Malay patients. Many novel variants were found across the PD-related genes.

    CONCLUSIONS: This study provides novel insights into the genetic architecture of EOPD in Southeast Asians, expands the genetic spectrum in PD-related genes, and highlights the importance of diversifying PD genetic research to include under-represented populations.

    Matched MeSH terms: Mutation/genetics
  12. Ariffin NS
    Pathol Res Pract, 2024 Feb;254:155076.
    PMID: 38219493 DOI: 10.1016/j.prp.2023.155076
    Despite advances in screening, therapy and surveillance, breast cancer remains threatening to women. Worst, patients suffer from side effects of treatments and cancer cells become resistant. The emergence of RUNX1 in breast cancer has put it in a spotlight due to its roles in the disease progression. It also plays important roles in normal mammary glands such as for cell growth, proliferation, migration and stemness. However, mutations in the RUNX1 gene have changed the regulation of these phenotypes and the full spectrum of its implications in breast cancer patients is unknown. In this study therefore, the pattern of RUNX1 mutations in breast cancer patients was examined to understand its fundamental impacts on the disease. The perturbation of RUNX1 and its mutations in breast cancer was elucidated through different studies reported in cBioPortal in the past ten years. From our analyses, the majority of RUNX1 mutations were found in the primary breast cancer, with women constituted most of the mutations, especially on the left side of the breast. Similarly, increased number of mutations was observed in ER-positive breast cancer patients and this was also the case at the early stage of the disease development. The level of RUNX1 mutations also increased gradually as patients got older and the peak was highest in the patients of 60-70 years old. Altogether, these data indicated that the mutated RUNX1 gene contributed to the progression of breast cancer and understanding of its regulatory mechanisms is crucial to therapeutically target this gene in the future.
    Matched MeSH terms: Mutation/genetics
  13. Ishak SNH, Kamarudin NHA, Ali MSM, Leow ATC, Shariff FM, Rahman RNZRA
    PLoS One, 2021;16(6):e0251751.
    PMID: 34061877 DOI: 10.1371/journal.pone.0251751
    5M mutant lipase was derived through cumulative mutagenesis of amino acid residues (D43E/T118N/E226D/E250L/N304E) of T1 lipase from Geobacillus zalihae. A previous study revealed that cumulative mutations in 5M mutant lipase resulted in decreased thermostability compared to wild-type T1 lipase. Multiple amino acids substitution might cause structural destabilization due to negative cooperation. Hence, the three-dimensional structure of 5M mutant lipase was elucidated to determine the evolution in structural elements caused by amino acids substitution. A suitable crystal for X-ray diffraction was obtained from an optimized formulation containing 0.5 M sodium cacodylate trihydrate, 0.4 M sodium citrate tribasic pH 6.4 and 0.2 M sodium chloride with 2.5 mg/mL protein concentration. The three-dimensional structure of 5M mutant lipase was solved at 2.64 Å with two molecules per asymmetric unit. The detailed analysis of the structure revealed that there was a decrease in the number of molecular interactions, including hydrogen bonds and ion interactions, which are important in maintaining the stability of lipase. This study facilitates understanding of and highlights the importance of hydrogen bonds and ion interactions towards protein stability. Substrate specificity and docking analysis on the open structure of 5M mutant lipase revealed changes in substrate preference. The molecular dynamics simulation of 5M-substrates complexes validated the substrate preference of 5M lipase towards long-chain p-nitrophenyl-esters.
    Matched MeSH terms: Mutation*
  14. Shepherdson JL, Hutchison K, Don DW, McGillivray G, Choi TI, Allan CA, et al.
    Am J Hum Genet, 2024 Mar 07;111(3):487-508.
    PMID: 38325380 DOI: 10.1016/j.ajhg.2024.01.007
    Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.
    Matched MeSH terms: Mutation, Missense/genetics
  15. Ariffin H, Geikowski A, Chin TF, Chau D, Arshad A, Abu Bakar K, et al.
    Med J Malaysia, 2014 Aug;69(4):193-4.
    PMID: 25500851 MyJurnal
    We report a case of Griscelli Syndrome (GS). Our patient initially presented with a diagnosis of haemophagocytic lymphistiocytosis (HLH). Subsequent microscopic analysis of the patient's hair follicle revealed abnormal distribution of melanosomes in the shaft, which is a hallmark for GS. Analysis of RAB27A gene in this patient revealed a homozygous mutation in exon 6, c.550C>T, p.R184X . This nonsense mutation causes premature truncation of the protein resulting in a dysfunctional RAB27A. Recognition of GS allows appropriate institution of therapy namely chemotherapy for HLH and curative haemotopoeitic stem cell transplantation.
    Matched MeSH terms: Mutation
  16. Ganikhodjaev N, Saburov M, Nawi AM
    ScientificWorldJournal, 2014;2014:835069.
    PMID: 25136693 DOI: 10.1155/2014/835069
    We shall explore a nonlinear discrete dynamical system that naturally occurs in population systems to describe a transmission of a trait from parents to their offspring. We consider a Mendelian inheritance for a single gene with three alleles and assume that to form a new generation, each gene has a possibility to mutate, that is, to change into a gene of the other kind. We investigate the derived models and observe chaotic behaviors of such models.
    Matched MeSH terms: Mutation
  17. Sng JH, Ali AB, Lee SC, Zahar D, Wong JE, Blake V, et al.
    J Med Genet, 2003 Oct;40(10):e117.
    PMID: 14569140
    Matched MeSH terms: Mutation*; Germ-Line Mutation; Mutation, Missense
  18. Shakinah Salleh, Zaiton Ahmad, Affrida Abu Hassan, Yahya Awang, Yutaka Oono
    MyJurnal
    Chrysanthemum morifolium is an important temperate cut flower for Malaysian floriculture
    industry and the lack of new local owned varieties led to this mutation breeding research. The
    objective of this study was to compare the effectiveness of ion beam irradiation in generating
    mutations on ray florets and nodal explants of Chrysanthemum morifolium cv. ‘Reagan Red’. Ion
    beams has become an efficient physical mutagen for mutation breeding. The ray florets and nodal
    explants were irradiated with ion beams at doses 0, 0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 10, 15, 20 and 30 Gy.
    The 50% of in vitro shoot regeneration (RD50) for ray florets explants was 2.0 Gy and for nodal
    explants was 4.0 Gy. Thus, relative biological effectiveness (RBE) for ray florets was found 2.0
    times higher than the nodal explants. The regenerated plantlets were planted in the greenhouse at
    MARDI, Cameron Highlands for morphological screening. Overall performance of survival
    plantlets derived from in vitro nodal and ray floret explants was recorded. The characters studied
    include plant morphology and flowering characteristic. The ray florets explants were found to be
    more sensitive to ion beam irradiation and generated more mutations as compared to nodal
    explants.
    Matched MeSH terms: Mutation
  19. Zaw MT, Emran NA, Lin Z
    J Infect Public Health, 2018 04 26;11(5):605-610.
    PMID: 29706316 DOI: 10.1016/j.jiph.2018.04.005
    BACKGROUND: Rifampicin (RIF) plays a pivotal role in the treatment of tuberculosis due to its bactericidal effects. Because the action of RIF is on rpoB gene encoding RNA polymerase β subunit, 95% of RIF resistant mutations are present in rpoB gene. The majority of the mutations in rpoB gene are found within an 81bp RIF-resistance determining region (RRDR).

    METHODOLOGY: Literatures on RIF resistant mutations published between 2010 and 2016 were thoroughly reviewed.

    RESULTS: The most commonly mutated codons in RRDR of rpoB gene are 531, 526 and 516. The possibilities of absence of mutation in RRDR of rpoB gene in MDR-TB isolates in few studies was due to existence of other rare rpoB mutations outside RRDR or different mechanism of rifampicin resistance.

    CONCLUSION: Molecular methods which can identify extensive mutations associated with multiple anti-tuberculous drugs are in urgent need so that the research on drug resistant mutations should be extended.

    Matched MeSH terms: Mutation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links