Displaying publications 81 - 100 of 370 in total

Abstract:
Sort:
  1. Rajisha KR, Maria HJ, Pothan LA, Ahmad Z, Thomas S
    Int J Biol Macromol, 2014 Jun;67:147-53.
    PMID: 24657376 DOI: 10.1016/j.ijbiomac.2014.03.013
    Potato starch nanocrystals were found to serve as an effective reinforcing agent for natural rubber (NR). Starch nanocrystals were obtained by the sulfuric acid hydrolysis of potato starch granules. After mixing the latex and the starch nanocrystals, the resulting aqueous suspension was cast into film by solvent evaporation method. The composite samples were successfully prepared by varying filler loadings, using a colloidal suspension of starch nanocrystals and NR latex. The morphology of the nanocomposite prepared was analyzed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). FESEM analysis revealed the size and shape of the crystal and their homogeneous dispersion in the composites. The crystallinity of the nanocomposites was studied using XRD analysis which indicated an overall increase in crystallinity with filler content. The mechanical properties of the nanocomposites such as stress-strain behavior, tensile strength, tensile modulus and elongation at break were measured according to ASTM standards. The tensile strength and modulus of the composites were found to improve tremendously with increasing nanocrystal content. This dramatic increase observed can be attributed to the formation of starch nanocrystal network. This network immobilizes the polymer chains leading to an increase in the modulus and other mechanical properties.
    Matched MeSH terms: Nanocomposites/chemistry*
  2. Benhamou K, Kaddami H, Magnin A, Dufresne A, Ahmad A
    Carbohydr Polym, 2015 May 20;122:202-11.
    PMID: 25817660 DOI: 10.1016/j.carbpol.2014.12.081
    Novel bio-based polyurethane (PU) nanocomposites composed of cellulose nanofiller extracted from the rachis of date palm tree and polycaprolactone (PCL) diol based PU were prepared by casting/evaporation. Two types of nanofiber were used: cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs). The mechanical and thermal properties of the nanocomposite films were studied by DMA, DSC, and tensile tests and the morphology was investigated by SEM. Bionanocomposites presented good mechanical properties in comparison to neat PU. While comparing both nanofillers, the improvement in mechanical and thermal properties was more pronounced for the nanocomposites based on CNF which could be explained, not only by the higher aspect ratio of CNF, but also by their better dispersion in the PU matrix. Calculation of the solubility parameters of the nanofiller surface polymers and of the PU segments portend a better interfacial adhesion for CNF based nanocomposites compared to CNC.
    Matched MeSH terms: Nanocomposites/chemistry*
  3. Irfan M, Irfan M, Shah SM, Baig N, Saleh TA, Ahmed M, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Oct;103:109769.
    PMID: 31349444 DOI: 10.1016/j.msec.2019.109769
    Non-covalent electrostatic interaction between amide nitrogen and carbonyl carbon of shorter chain length of polyvinylpyrrolidone (PVP-k25) was developed with in-house carboxylic oxidized multiwall carbon nanotubes (O-MWCNT) and then blended with Polyethersulfone (PES) polymer. FTIR analysis was utilized to confirm bonding nature of nano-composites (NCs) of O-MWCNT/PVP-k25 and casting membranes. Non-solvent induces phase separation process developed regular finger-like channels in composite membranes whereas pristine PES exhibited spongy entities as studied by cross sectional analysis report of FESEM. Further, FESEM instrument was also utilized to observe the dispersion of O-MWCNT/PVP based nanocomposite (NCs) with PES and membranes leaching phenomena analysis. Contact angle experiments described 24% improvement of hydrophilic behaviour, leaching ratio of additives was reduced to 1.89%, whereas water flux enhanced up to 6 times. Bovine serum albumin (BSA) and lysozyme based antifouling analysis shown up to 25% improvement, whereas 84% of water flux was regained after protein fouling than pristine PES. Anticoagulant activity was reported by estimating prothrombin, thrombin, plasma re-calcification times and production of fibrinogen cluster with platelets-adhesions photographs and hemolysis experiments. Composite membranes exhibited 3.4 and 3 times better dialysis clearance ratios of urea and creatinine solutes as compared to the raw PES membrane.
    Matched MeSH terms: Nanocomposites/chemistry*
  4. Rasheed M, Jawaid M, Parveez B, Zuriyati A, Khan A
    Int J Biol Macromol, 2020 Oct 01;160:183-191.
    PMID: 32454108 DOI: 10.1016/j.ijbiomac.2020.05.170
    This work investigates the extraction of cellulose nanocrystals (CNC) from bamboo fibre as an alternative approach to utilize the waste bamboo fibre. In this study, bamboo fibre was subjected to acid hydrolysis for efficient isolation of CNC from bamboo fibre. The extracted CNC's were morphologically, characterized via Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM). The energy Dispersive X-rays (EDX) provided the elemental composition of the prepared CNC's and X-ray diffractometer (XRD) exhibited their crystallinity. The physiochemical analysis was done via Fourier Transform Infrared (FTIR); and their thermal analysis was revealed by Thermogravimetric Analysis (TGA) and Differential scanning calorimetry (DSC). As from their morphological investigations, rod like structures of CNC's were observed under SEM analysis with higher carbon content as demonstrated by EDX, while needle shaped CNC's were observed from TEM and AFM studies. Acid hydrolysis for 45 min resulted into higher degree of crystallinity and higher yield of CNC's about 86.96% and 22% respectively. Owing to higher quality of CNC's obtained as a result of efficient and modified techniques, these can find potential usage in nanocomposites for biomedical and food packaging application.
    Matched MeSH terms: Nanocomposites/chemistry
  5. Karthikeyan C, Jenita Rani G, Ng FL, Periasamy V, Pappathi M, Jothi Rajan M, et al.
    Appl Biochem Biotechnol, 2020 Nov;192(3):751-769.
    PMID: 32557232 DOI: 10.1007/s12010-020-03352-4
    A facile chemical reduction approach is adopted for the synthesis of iron tungstate (FeWO4)/ceria (CeO2)-decorated reduced graphene oxide (rGO) nanocomposite. Surface morphological studies of rGO/FeWO4/CeO2 composite reveal the formation of hierarchical FeWO4 flower-like microstructures on rGO sheets, in which the CeO2 nanoparticles are decorated over the FeWO4 microstructures. The distinct anodic peaks observed for the cyclic voltammograms of studied electrodes under light/dark regimes validate the electroactive proteins present in the microalgae. With the cumulative endeavors of three-dimensional FeWO4 microstructures, phase effect between rGO sheet and FeWO4/CeO2, highly exposed surface area, and light harvesting property of CeO2 nanoparticles, the relevant rGO/FeWO4/CeO2 nanocomposite demonstrates high power and stable biophotovoltaic energy generation compared with those of previous reports. Thus, these findings construct a distinct horizon to tailor a ternary nanocomposite with high electrochemical activity for the construction of cost-efficient and environmentally benign fuel cells.
    Matched MeSH terms: Nanocomposites/chemistry
  6. Oyekanmi AA, Saharudin NI, Hazwan CM, H P S AK, Olaiya NG, Abdullah CK, et al.
    Molecules, 2021 Apr 13;26(8).
    PMID: 33924692 DOI: 10.3390/molecules26082254
    Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films' modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.
    Matched MeSH terms: Nanocomposites/chemistry
  7. Sirajudeen AAO, Annuar MSM, Subramaniam R
    Biotechnol Appl Biochem, 2021 Apr;68(2):307-318.
    PMID: 32314420 DOI: 10.1002/bab.1928
    A microbial fuel cell is a sustainable and environmental-friendly device that combines electricity generation and wastewater treatment through metabolic activities of microorganisms. However, low power output from inadequate electron transfer to the anode electrode hampers its practical implementation. Nanocomposites of oxidized carbon nanotubes and medium-chain-length polyhydroxyalkanoates (mcl-PHA) grafted with methyl acrylate monomers enhance the electrochemical function of electrodes in microbial fuel cell. Extensive polymerization of methyl acrylate monomers within mcl-PHA matrix, and homogenous dispersion of carbon nanotubes within the graft matrix are responsible for the enhancement. Modified electrodes exhibit high conductivities, better redox peak and reduction of cell internal resistance up to 76%. A stable voltage output at almost 700 mV running for 225 H generates maximum power and current density of 351 mW/m2 and 765 mA/m2 , respectively. Superior biofilm growth on modified surface is responsible for improved electron transfer to the anode hence stable and elevated power output generation.
    Matched MeSH terms: Nanocomposites/chemistry*
  8. Rizal S, Mistar EM, Oyekanmi AA, H P S AK, Alfatah T, Olaiya NG, et al.
    Molecules, 2021 Jul 13;26(14).
    PMID: 34299524 DOI: 10.3390/molecules26144248
    The use of chemical modification of cellulosic fibre is applied in order to increase the hydrophobicity, hence improving the compatibility between the fibre and matrix bonding. In this study, the effect of propionic anhydride modification of kenaf fibre was investigated to determine the role of bionanocarbon from oil palm shell agricultural wastes in the improvement of the functional properties of bionanocomposites. The vinyl esters reinforced with unmodified and propionic anhydride modified kenaf fibres bio nanocomposites were prepared using 0, 1, 3, 5 wt% of bio-nanocarbon. Characterisation of the fabricated bionanocomposite was carried out using FESEM, TEM, FT-IR and TGA to investigate the morphological analysis, surface properties, functional and thermal analyses, respectively. Mechanical performance of bionanocomposites was evaluated according to standard methods. The chemical modification of cellulosic fibre with the incorporation of bionanocarbon in the matrix exhibited high enhancement of the tensile, flexural, and impact strengths, for approximately 63.91%, 49.61% and 54.82%, respectively. The morphological, structural and functional analyses revealed that better compatibility of the modified fibre-matrix interaction was achieved at 3% bionanocarbon loading, which indicated improved properties of the bionanocomposite. The nanocomposites exhibited high degradation temperature which signified good thermal stability properties. The improved properties of the bionanocomposite were attributed to the effect of the surface modification and bionanocarbon enhancement of the fibre-matrix networks.
    Matched MeSH terms: Nanocomposites/chemistry*
  9. Abdi MM, Md Tahir P, Liyana R, Javahershenas R
    Molecules, 2018 Sep 26;23(10).
    PMID: 30261640 DOI: 10.3390/molecules23102470
    In this study a cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as a soft template for in situ chemical polymerization of aniline on the surface of microcrystalline cellulose (MCC). The morphology of the wire-like and porous nanostructure of the resulting composite was highly dependent on the MCC and CTAB concentrations. The effect of the MCC and CTAB concentrations on the electrochemical and morphological properties of the polyaniline (PAni) nanocomposite was studied. Cyclic voltammograms of modified PAni/MCC/CTAB electrode displayed a high current response and the effect of scan rate on the current response confirmed a diffusion controlled process on the surface of the electrode that makes it suitable for sensor applications. The overlapping characteristic peaks of pure PAni and MCC caused peak broadening at 3263 cm-1 in the IR spectra of PAni/MCC/CTAB nanocomposite that revealed the interaction between NH of PAni and OH group of MCC via electrostatic interactions. The addition of MCC to PAni through chemical polymerization decreased the thermal stability of composite compared to pure PAni. Lower crystallinity was observed in the XRD diffractogram, with 2 theta values of 22.8, 16.5, and 34.6 for PAni/MCC, confirming the formation of PAni on the MCC surface.
    Matched MeSH terms: Nanocomposites/chemistry*
  10. Irfan M, Irfan M, Idris A, Baig N, Saleh TA, Nasiri R, et al.
    J Biomed Mater Res A, 2019 03;107(3):513-525.
    PMID: 30484939 DOI: 10.1002/jbm.a.36566
    This study focused to optimize the performance of polyethersulfone (PES) hemodialysis (HD) membrane using carboxylic functionalized multiwall carbon nanotubes (c-MWCNT) and lower molecular weight grade of polyvinylpyrrolidone (PVP-k30). Initially, MWCNT were chemically functionalized by acid treatment and nanocomposites (NCs) of PVP-k30 and c-MWCNT were formed and subsequently blended with PES polymer. The spectra of FTIR of the HD membranes revealed that NCs has strong hydrogen bonding and their addition to PES polymer improved the capillary system of membranes as confirmed by Field Emission Scanning Electron Microscope (FESEM) and leaching of the additive decreased to 2% and hydrophilicity improved to 22%. The pore size and porosity of NCs were also enhanced and rejection rate was achieved in the establish dialysis range (<60 kDa). The antifouling studies had shown that NCs membrane exhibited 30% less adhesion of protein with 80% flux recovery ratio. The blood compatibility assessment disclosed that NCs based membranes showed prolonged thrombin and prothrombin clotting times, lessened production of fibrinogen cluster, and greatly suppressed adhesion of blood plasma than a pristine PES membrane. The results also unveiled that PVP-k30/NCs improved the surface properties of the membrane and the urea and creatinine removal increased to 72% and 75% than pure PES membranes. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 513-525, 2019.
    Matched MeSH terms: Nanocomposites/chemistry*
  11. Saifullah B, Arulselvan P, El Zowalaty ME, Tan WS, Fakurazi S, Webster TJ, et al.
    Int J Nanomedicine, 2021;16:7035-7050.
    PMID: 34703226 DOI: 10.2147/IJN.S297040
    Introduction: Mycobacterium tuberculosis infections are associated with severe local inflammatory reactions, which may be life-threatening and lead to tuberculosis pathogenesis and associated complications. Inorganic nanolayers have been vastly exploited for biomedical applications (especially in drug delivery) because of their biocompatible and biodegradable nature with the ability to release a drug in a sustained manner. Herein, we report a new nanodelivery system of inorganic nanolayers based on magnesium layered hydroxides (MgLH) and a successfully intercalated anti-tuberculosis drug para-aminosalicylic acid (PAS).

    Methods: The designed anti-tuberculosis nanodelivery composite, MgLH-PAS, was prepared by a novel co-precipitation method using MgNO3 as well MgO as starting materials.

    Results: The designed nano-formulation, PAS-MgLH, showed good antimycobacterial and antimicrobial activities with significant synergistic anti-inflammatory effects on the suppression of lipopolysaccharide (LPS) stimulated inflammatory mediators in RAW 264.7 macrophages. The designed nano-formulation was also found to be biocompatible with human normal lung cells (MRC-5) and 3T3 fibroblast cells. Furthermore, the in vitro release of PAS from PAS-MgLH was found to be sustained in human body simulated phosphate buffer saline (PBS) solutions of pH 7.4 and pH 4.8.

    Discussion: The results of the present study are highly encouraging for further in vivo studies. This new nanodelivery system, MgLH, can be exploited in the delivery of other drugs and in numerous other biomedical applications as well.

    Matched MeSH terms: Nanocomposites*
  12. Arul P, Nandhini C, Huang ST, Gowthaman NSK, Huang CH
    Food Chem, 2023 Jul 15;414:135747.
    PMID: 36841102 DOI: 10.1016/j.foodchem.2023.135747
    A simple and rapid screening of biomarkers in clinical and food matrices is urgently needed to diagnose cardiovascular diseases. The cholesterol (Chol) and hydrogen peroxide (H2O2) are critical bio-indicators, which require more inventive detection techniques to be applied to real food, and bio-samples. In this study, a robust dual sensor was developed for Chol and H2O2 using hybrid catalyst. Bovine serum albumin (BSA)-capped nanocatalyst was potentially catalyzed 3,3',5,5'-tetramethylbenzidine (TMB), and H2O2. The enzymatic nanoelectrocatalyst delivered a wide range of signaling concentrations from 250 nM to 3.0 mM and 100 nM to 10 mM, limit of detection (LOD) of 53.2 nM and 18.4 nM for Chol and H2O2. The cholesterol oxidase-BSA-AuNPs-metal-free organic framework (ChOx-BSA-AuNPs-MFOF) based electrode surface effectively operated in live-cells and real-food samples. The enzymatic sensor exhibits adequate recovery of real-food samples (96.96-99.44%). Finally, the proposed system is a suitable choice for the potential applications of Chol and H2O2 in clinical and food chemistry.
    Matched MeSH terms: Nanocomposites*
  13. Afzal S, Samsudin EM, Julkapli NM, Hamid SB
    Environ Sci Pollut Res Int, 2016 Nov;23(22):23158-23168.
    PMID: 27591888
    For the synthesis of a highly active TiO2-chitosan nanocomposite, pH plays a crucial role towards controlling its morphology, size, crystallinity, thermal stability, and surface adsorption properties. The presence of chitosan (CS) biopolymer facilitates greater sustainability to the photoexcited electrons and holes on the catalysts' surface. The variation of synthesis pH from 2 to 5 resulted in different physico-chemical and photocatalytic properties, whereby a pH of 3 resulted in TiO2-chitosan nanocomposite with the highest photocatalytic degradation (above 99 %) of methylene orange (MO) dye. This was attributed to the efficient surface absorption properties, high crystallinity, and the presence of reactive surfaces of -NH2 and -OH groups, which enhances the adsorption-photodegradation effect. The larger surface oxygen vacancies coupled with reduced electron-hole recombination further enhanced the photocatalytic activity. It is undeniable that the pH during synthesis is critical towards the development of the properties of the TiO2-chitosan nanocomposite for the enhancement of photocatalytic activity.
    Matched MeSH terms: Nanocomposites/chemistry*
  14. Khan FSA, Mubarak NM, Tan YH, Karri RR, Khalid M, Walvekar R, et al.
    Environ Sci Pollut Res Int, 2020 Dec;27(35):43526-43541.
    PMID: 32909134 DOI: 10.1007/s11356-020-10482-z
    Substantial discharge of hazardous substances, especially dyes and heavy metal ions to the environment, has become a global concern due to many industries neglecting the environmental protocols in waste management. A massive discharge of contaminantsfrom different anthropogenic activities, can pose alarming threats to living species and adverse effect to the ecosystem stability. In the process of treating the polluted water, various methods and materials are used. Hybrid nanocomposites have attained numerous interest due to the combination of remarkable features of the organic and inorganic elements in a single material. In this regards, carbon and polymer based nanocomposites have gained particular interest because of their tremendous magnetic properties and stability. These nanocomposites can be fabricated using several approaches that include filling, template, hydrothermal, pulsed-laser irradiation, electro-spinning, detonation induced reaction, pyrolysis, ball milling, melt-blending, and many more. Moreover, carbon-based and polymer-based magnetic nanocomposites have been utilized for an extensive number of applications such as removal of heavy metal and dye adsorbents, magnetic resonance imaging, and drug delivery. This review emphasized mainly on the production of magnetic carbon and polymer nanocomposites employing various approaches and their applications in water and wastewater treatment. Furthermore, the future opportunities and challenges in applying magnetic nanocomposites for heavy metal ion and dye removal from water and wastewater treatment plant.
    Matched MeSH terms: Nanocomposites*
  15. Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A
    Int J Nanomedicine, 2019;14:5753-5783.
    PMID: 31413573 DOI: 10.2147/IJN.S192779
    Tissue engineering embraces the potential of recreating and replacing defective body parts by advancements in the medical field. Being a biocompatible nanomaterial with outstanding physical, chemical, optical, and biological properties, graphene-based materials were successfully employed in creating the perfect scaffold for a range of organs, starting from the skin through to the brain. Investigations on 2D and 3D tissue culture scaffolds incorporated with graphene or its derivatives have revealed the capability of this carbon material in mimicking in vivo environment. The porous morphology, great surface area, selective permeability of gases, excellent mechanical strength, good thermal and electrical conductivity, good optical properties, and biodegradability enable graphene materials to be the best component for scaffold engineering. Along with the apt microenvironment, this material was found to be efficient in differentiating stem cells into specific cell types. Furthermore, the scope of graphene nanomaterials in liver tissue engineering as a promising biomaterial is also discussed. This review critically looks into the unlimited potential of graphene-based nanomaterials in future tissue engineering and regenerative therapy.
    Matched MeSH terms: Nanocomposites/chemistry
  16. Daub NA, Aziz F, Mhamad SA, Chee DNA, Jaafar J, Yusof N, et al.
    Environ Sci Pollut Res Int, 2024 Mar;31(11):16629-16641.
    PMID: 38321283 DOI: 10.1007/s11356-024-32261-w
    In response to the escalating global issue of microbial contamination, this study introduces a breakthrough photocatalyst: bismuth ferrite-activated carbon (BFO-AC) for visible light-driven disinfection, specifically targeting the Gram-positive bacterium Staphylococcus aureus (S. aureus). Employing an ultrasonication method, we synthesized various BFO-AC ratios and subjected them to comprehensive characterization. Remarkably, the bismuth ferrite-activated carbon 1:1.5 ratio (BA 1:1.5) nanocomposite exhibited the narrowest band gap of 1.86 eV. Notably, BA (1:1.5) demonstrated an exceptional BET surface area of 862.99 m2/g, a remarkable improvement compared to pristine BFO with only 27.61 m2/g. Further investigation through FE-SEM unveiled the presence of BFO nanoparticles on the activated carbon surface. Crucially, the photocatalytic efficacy of BA (1:1.5) towards S. aureus reached its zenith, achieving complete inactivation in just 60 min. TEM analysis revealed severe damage and rupture of bacterial cells, affirming the potent disinfection capabilities of BA (1:1.5). This exceptional disinfection efficiency underscores the promising potential of BA (1:1.5) for the treatment of contaminated water sources. Importantly, our results underscore the enhanced photocatalytic performance with an increased content of activated carbon, suggesting a promising avenue for more effective microorganism inactivation.
    Matched MeSH terms: Nanocomposites*
  17. Nur Lisa Farhana Mohamad, Fathilah Binti Ali, Azlin Suhaida Azmi, Barre, Mohamed Soleiman, Hazleen Anuar
    MyJurnal
    The concern about our dependency on non-renewable resources and overwhelming environmental issues such as pollution caused by non-degradable packaging materials has prompted researchers to come up with alternatives to solve this problem. Thermoplastic polylactic acid (PLA) has been gaining interest due to its versatility and easy processability, thus this study was carried out to find out the properties of PLA reinforced with pineapple fibers. However, surface of the natural fibers need to be treated for better properties enhancement in the polymer matrices. Considering this, fibers were treated with 10% (w/v) concentration of potassium hydroxide (KOH) and then continued for mixing with PLA at a fixed ratio of plasticizer by using internal mixer, and then the composites were prepared into sheet via hot press. Characterization for the mechanical and morphological was conducted by using tensile testing and scanning electron microscopy, respectively. After the analysis, it is found that the surface treated pineapple fiber composite showed better elongation at break compared to untreated fiber composite. The enhance properties of PLA nanocomposites has potential to be used in various packaging materials.
    Matched MeSH terms: Nanocomposites
  18. Moeinzadeh R, Jadval Ghadam AG, Lau WJ, Emadzadeh D
    Carbohydr Polym, 2019 Dec 01;225:115212.
    PMID: 31521264 DOI: 10.1016/j.carbpol.2019.115212
    In this work, nanocomposite ultrafiltration (UF) membranes were synthesized through addition of different quantities of amino-functionalized nanocrystalline cellulose (NCs) in order to improve membrane anti-fouling resistance against oil depositions. The characterization results demonstrated that the overall porosity and hydrophilicity of the membranes were improved significantly upon addition of NCs despite a decrease in the pore size of nanocomposite membranes. The UF performance results showed that the nanocomposite membrane incorporated with 1 wt% NCs achieved an optimal water flux improvement, i.e., approximately 43% higher than the pristine membrane. Such nanocomposite membrane also exhibited promising oil rejection (>98.2%) and excellent water flux recovery rate of ˜98% and ˜85% after one and four cycles of treating 250-ppm oil-in-water emulsion solution, respectively. The desirable anti-fouling properties of nanocomposite membrane can be attributed to the existence of hydrophilic functional groups (-OH) on the surface of membrane stemming from addition of NCs that renders the membrane less vulnerable to fouling during oil-in-water emulsion treatment.
    Matched MeSH terms: Nanocomposites
  19. Chen RS, Mohd Ruf MFH, Shahdan D, Ahmad S
    PLoS One, 2019;14(9):e0222662.
    PMID: 31545820 DOI: 10.1371/journal.pone.0222662
    Thermoplastic natural rubber (TPNR) was compounded with graphene nanoplatelets (GNP) via ultrasonication and melt blending. The effects of ultrasonication period (1-4 hours) and GNP weight fraction (0.5, 1.0, 1.5 and 2.0 wt.%) on the mechanical, thermal and conductivity properties were investigated. Results showed that the 3 hours of ultrasonic treatment on LNR/GNP gave the greatest improvement in tensile strength of 25.8% (TPNR/GNP nanocomposites) as compared to those without ultrasonication. The TPNR nanocomposites containing 1.5 wt.% GNP exhibited the highest strength (16 MPa for tensile, 14 MPa for flexural and 11 kJm-2 for impact) and modulus (556 MPa and 869 MPa for tensile and flexural, respectively). The incorporation of GNP had enhanced the thermal stability. It can be concluded that the GNP had imparted the thermally and electrically conductive nature to the TPNR blend.
    Matched MeSH terms: Nanocomposites
  20. Husna Abdul Rahman, Haliza M. Haron, Naimah Mat Isa, Hasnida Saad
    ESTEEM Academic Journal, 2020;15(2):24-34.
    MyJurnal
    PMMA polymer microfiber doped Multi Walled Carbon Nanotubes (MWCNTs) was reported for alcohol sensing application. The sensitivity of the sensor is increasing relatively with the increment of the alcohol concentration which affects the transmission output power. However, the challenges are on choosing the right material and the simplicity on the fabrication of microfiber sensor for an improvement of the sensitivity of the sensor. A PMMA polymer microfiber doped MWCNTs was introduced for an application of alcohol detection system. Direct drawing technique was used to form a uniform waist size of microfiber sensor with 6µm diameter and 5mm length respectively. The performance of the fabricated sensor was tested with two types of alcohol, namely ethanol and 2-propanol at concentrations varying from 2% to 8% with 2% intervals. The performance which includes sensitivity, linearity and resolution were studied and analysed for the undoped PMMA and PMMA doped MWCNTs-doped polymer microfiber. The PMMA doped MWCNTs sensor which exhibited higher sensitivity for ethanol sensing with 83.23dBm/% with a linearity of 99.96% and a sensitivity of 73.75dBm/% with linearity 99.82% for 2- propanol sensing. The resolution has improved significantly by 0.0004% and 0.0007% respectively. In conclusion, PMMA doped MWCNTs was able to increase the sensitivity as well as the reproducibility of the microfiber sensor for the alcohol detection system.
    Matched MeSH terms: Nanocomposites
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links