Displaying publications 81 - 100 of 425 in total

Abstract:
Sort:
  1. Chauhan A, Mazlee AM, Azhar NA, Ng Bansing SA, Qing CS, Sidhu DS, et al.
    J Oral Biol Craniofac Res, 2020 09 17;10(4):670-673.
    PMID: 32995257 DOI: 10.1016/j.jobcr.2020.09.003
    Objective: High intensity workout stimulates the sympathetic nervous system and causes changes in the salivary composition. We hypothesized that activity of caries-causing bacteria in saliva may differ before and after workout. The objective of the study was to investigate if there is any difference in the oral microbial activity before and after HIIT (High Intensity Interval Training) workout.

    Methods: Unstimulated saliva was collected before and after HIIT workout (n = 35). The workout was performed until the participant's heart rate reached 70-80% of maximum heart rate. The microbial activity of saliva was estimated using Oratest.

    Results: The participants belonged to 4 ethnities- Indian, Malays, Chinese and Others (18-22 years). The post-workout salivary microbial activity was higher than the pre-workout levels, being statistically significant (P = 0.010). The increase in the post-workout microbial activity among females was found to be higher when compared to males. We also found significant different according to the ethnicities.

    Conclusion: We conclude that caries activity increases immediately after a vigorous workout and remains high at least for 15 min. Further studies are needed to validate the findings. Workout enthusiast should be aware of this so that they can take necessary precautions and be more regular with their dental check-ups.

    Matched MeSH terms: Central Nervous System Stimulants; Sympathetic Nervous System
  2. Ramanathan S, McCurdy CR
    Curr Opin Psychiatry, 2020 07;33(4):312-318.
    PMID: 32452943 DOI: 10.1097/YCO.0000000000000621
    PURPOSE OF REVIEW: To inform readers about the increasingly popular Western dietary supplement, kratom (Mitragyna speciosa) and how the products are available in the Western world compared with traditional Southeast Asian use. Kratom has been traditionally used for increasing stamina of outdoor laborers (farmers), mood enhancement, pain, and opium addiction. Interestingly, kratom has been reported to have a paradoxical effect in that stimulant feelings, and sedative feelings can be obtained depending on the amount utilized. There are several biologically active alkaloids present in kratom.

    RECENT FINDINGS: Recent studies have been focused on the interactions of mitragynine, the most abundant alkaloid, and opioid-like effects. This has been driven by the harm that kratom products have produced in the Western world, in stark contrast to the lack of harm in Southeast Asian traditional use over centuries. Many users in the Western world ingest kratom for mood enhancement and/or to ween themselves from prescription or illicit opioids. Highly concentrated products and recreational use and misuse have resulted in individuals pushing doses to levels that have not been imagined or ever studied in animal, let alone humans.

    SUMMARY: Kratom, as a preparation and how it is utilized is different around the world.

    Matched MeSH terms: Central Nervous System Stimulants/pharmacology*
  3. Chang CC, Connahs H, Tan ECY, Norma-Rashid Y, Mrinalini, Li D, et al.
    Mol Ecol, 2020 07;29(14):2626-2638.
    PMID: 32510793 DOI: 10.1111/mec.15502
    Identifying the genetic architecture underlying phenotypic variation in natural populations and assessing the consequences of polymorphisms for individual fitness are fundamental goals in evolutionary and molecular ecology. Consistent between-individual differences in behaviour have been documented for a variety of taxa. Dissecting the genetic basis of such behavioural differences is however a challenging endeavour. The molecular underpinnings of natural variation in aggression remain elusive. Here, we used comparative gene expression (transcriptome analysis and RT-PCR), genetic association analysis and pharmacological experiments to gain insight into the genetic basis of aggression in wild-caught jumping spiders (Portia labiata). We show that spider aggression is associated with a putative viral infection response gene, BTB/POZ domain-containing protein 17 (BTBDH), in addition to a putative serotonin receptor 1A (5-HT1A) gene. Spider aggression varies with virus loads, and BTBDH is upregulated in docile spiders and exhibits a genetic variant associated with aggression. We also identify a putative serotonin receptor 5-HT1A gene upregulated in docile P. labiata. Individuals that have been treated with serotonin become less aggressive, but individuals treated with a nonselective serotonin receptor antagonist (methiothepin) also reduce aggression. Further, we identify the genetic variants in the 5-HT1A gene that are associated with individual variation in aggression. We therefore conclude that co-evolution of the immune and nervous systems may have shaped the between-individual variation in aggression in natural populations of jumping spiders.
    Matched MeSH terms: Nervous System*
  4. Yew CW
    Med J Malaysia, 1977 Mar;31(3):232-5.
    PMID: 904518
    Matched MeSH terms: Central Nervous System/abnormalities*
  5. Ghee LT
    Med J Malaya, 1972 Mar;26(3):201-4.
    PMID: 5031016
    Matched MeSH terms: Nervous System Diseases/etiology*
  6. Mungroo MR, Anwar A, Khan NA, Siddiqui R
    ACS Omega, 2020 Jun 02;5(21):12467-12475.
    PMID: 32548431 DOI: 10.1021/acsomega.0c01305
    Balamuthia mandrillaris and Naegleria fowleri are free-living amoebae that cause infection of the central nervous system, granulomatous amoebic encephalitis (GAE) and primary amoebic meningoencephalitis (PAM), respectively. The fact that mortality rates for cases of GAE and PAM are more than 95% indicates the need for new therapeutic agents against those amoebae. Considering that curcumin exhibits a wide range of biological properties and has shown efficacy against Acanthamoeba castellanii, we evaluated the amoebicidal properties of curcumin against N. fowleri and B. mandrillaris. Curcumin showed significant amoebicidal activities with an AC50 of 172 and 74 μM against B. mandrillaris and N. fowleri, respectively. Moreover, these compounds were also conjugated with gold nanoparticles to further increase their amoebicidal activities. After conjugation with gold nanoparticles, amoebicidal activities of the drugs were increased by up to 56 and 37% against B. mandrillaris and N. fowleri, respectively. These findings are remarkable and suggest that clinically available curcumin and our gold-conjugated curcumin nanoparticles hold promise in the improved treatment of fatal infections caused by brain-eating amoebae and should serve as a model in the rationale development of therapeutic interventions against other infections.
    Matched MeSH terms: Central Nervous System Parasitic Infections; Central Nervous System Protozoal Infections
  7. Wolff GH, Riffell JA
    J Exp Biol, 2018 02 27;221(Pt 4).
    PMID: 29487141 DOI: 10.1242/jeb.157131
    Mosquitoes are best known for their proclivity towards biting humans and transmitting bloodborne pathogens, but there are over 3500 species, including both blood-feeding and non-blood-feeding taxa. The diversity of host preference in mosquitoes is exemplified by the feeding habits of mosquitoes in the genus Malaya that feed on ant regurgitation or those from the genus Uranotaenia that favor amphibian hosts. Host preference is also by no means static, but is characterized by behavioral plasticity that allows mosquitoes to switch hosts when their preferred host is unavailable and by learning host cues associated with positive or negative experiences. Here we review the diverse range of host-preference behaviors across the family Culicidae, which includes all mosquitoes, and how adaptations in neural circuitry might affect changes in preference both within the life history of a mosquito and across evolutionary time-scales.
    Matched MeSH terms: Nervous System Physiological Phenomena*
  8. Zolio L, Lim KY, McKenzie JE, Yan MK, Estee M, Hussain SM, et al.
    Osteoarthritis Cartilage, 2021 08;29(8):1096-1116.
    PMID: 33971205 DOI: 10.1016/j.joca.2021.03.021
    OBJECTIVE: To determine the prevalence of neuropathic-like pain (NP) and pain sensitization (PS) defined by self-report questionnaires in knee and hip osteoarthritis, and whether prevalence is potentially explained by disease-severity or affected joint.

    DESIGN: MEDLINE, EMBASE, CINAHL were systematically searched (1990-April 2020) for studies describing the prevalence of NP and PS in knee and hip osteoarthritis using self-report questionnaires. Random-effects meta-analysis was performed. Statistical heterogeneity between studies and sub-groups (affected joint and population source as a proxy for disease severity) was assessed (I2 statistic and the Chi-squared test).

    RESULTS: From 2,706 non-duplicated references, 39 studies were included (2011-2020). Thirty-six studies reported on knee pain and six on hip pain. For knee osteoarthritis, the pooled prevalence of NP was: using PainDETECT, possible NP(score ≥13) 40% (95%CI 32-48%); probable NP(score >18) 20% (95%CI 15-24%); using Self-Report Leeds Assessment of Neuropathic Symptoms and Signs, 32% (95%CI 26-38%); using Douleur Neuropathique (DN4) 41% (95% CI 24-59%). The prevalence of PS using Central Sensitization Inventory (CSI) was 36% (95% CI 12-59%). For hip osteoarthritis, the pooled prevalence of NP was: using PainDETECT, possible NP 29% (95%CI 22-37%%); probable NP 9% (95%CI 6-13%); using DN4 22% (95%CI 12-31%) in one study. The prevalence of possible NP pain was higher at the knee (40%) than the hip (29%) (difference 11% (95% CI 0-22%), P = 0.05).

    CONCLUSIONS: Using self-report questionnaire tools, NP was more prevalent in knee than hip osteoarthritis. The prevalence of NP in knee and hip osteoarthritis were similar for each joint regardless of study population source or tool used. Whether defining NP using self-report questionnaires enables more effective targeted therapy in osteoarthritis requires investigation.

    Matched MeSH terms: Central Nervous System Sensitization/physiology*
  9. Ahmed S, Butterworth P, Barwick A, Sharma A, Hasan MZ, Nancarrow S
    Trials, 2022 Dec 16;23(1):1017.
    PMID: 36527100 DOI: 10.1186/s13063-022-06968-5
    BACKGROUND: Foot complications occur in conjunction with poorly controlled diabetes. Plantar forefoot ulceration contributes to partial amputation in unstable diabetics, and the risk increases with concomitant neuropathy. Reducing peak plantar forefoot pressure reduces ulcer occurrence and recurrence. Footwear and insoles are used to offload the neuropathic foot, but the success of offloading is dependent on patient adherence. This study aims to determine which design and modification features of footwear and insoles improve forefoot plantar pressure offloading and adherence in people with diabetes and neuropathy.

    METHODS: This study, involving a series of N-of-1 trials, included 21 participants who had a history of neuropathic plantar forefoot ulcers. Participants were recruited from two public hospitals and one private podiatry clinic in Sydney, New South Wales, Australia. This trial is non-randomised and unblinded. Participants will be recruited from three sites, including two high-risk foot services and a private podiatry clinic in Sydney, Australia. Mobilemat™ and F-Scan® plantar pressure mapping systems by TekScan® (Boston, USA) will be used to measure barefoot and in-shoe plantar pressures. Participants' self-reports will be used to quantify the wearing period over a certain period of between 2 and 4 weeks during the trial. Participant preference toward footwear, insole design and quality-of-life-related information will be collected and analysed. The descriptive and inferential statistical analyses will be performed using IBM SPSS Statistics (version 27). And the software NVivo (version 12) will be utilised for the qualitative data analysis.

    DISCUSSION: This is the first trial assessing footwear and insole interventions in people with diabetes by using a series of N-of-1 trials. Reporting self-declared wearing periods and participants' preferences on footwear style and aesthetics are the important approaches for this trial. Patient-centric device designs are the key to therapeutic outcomes, and this study is designed with that strategy in mind.

    TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12620000699965p. Registered on June 23, 2020.

    Matched MeSH terms: Peripheral Nervous System Diseases*
  10. Jha NK, Ojha S, Jha SK, Dureja H, Singh SK, Shukla SD, et al.
    J Mol Neurosci, 2021 Nov;71(11):2192-2209.
    PMID: 33464535 DOI: 10.1007/s12031-020-01767-6
    The coronavirus disease 2019 (COVID-19) pandemic is an issue of global significance that has taken the lives of many across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for its pathogenesis. The pulmonary manifestations of COVID-19 have been well described in the literature. Initially, it was thought to be limited to the respiratory system; however, we now recognize that COVID-19 also affects several other organs, including the nervous system. Two similar human coronaviruses (CoV) that cause severe acute respiratory syndrome (SARS-CoV-1) and Middle East respiratory syndrome (MERS-CoV) are also known to cause disease in the nervous system. The neurological manifestations of SARS-CoV-2 infection are growing rapidly, as evidenced by several reports. There are several mechanisms responsible for such manifestations in the nervous system. For instance, post-infectious immune-mediated processes, direct virus infection of the central nervous system (CNS), and virus-induced hyperinflammatory and hypercoagulable states are commonly involved. Guillain-Barré syndrome (GBS) and its variants, dysfunction of taste and smell, and muscle injury are numerous examples of COVID-19 PNS (peripheral nervous system) disease. Likewise, hemorrhagic and ischemic stroke, encephalitis, meningitis, encephalopathy acute disseminated encephalomyelitis, endothelialitis, and venous sinus thrombosis are some instances of COVID-19 CNS disease. Due to multifactorial and complicated pathogenic mechanisms, COVID-19 poses a large-scale threat to the whole nervous system. A complete understanding of SARS-CoV-2 neurological impairments is still lacking, but our knowledge base is rapidly expanding. Therefore, we anticipate that this comprehensive review will provide valuable insights and facilitate the work of neuroscientists in unfolding different neurological dimensions of COVID-19 and other CoV associated abnormalities.
    Matched MeSH terms: Nervous System/virology; Nervous System Diseases/etiology*; Nervous System Diseases/immunology; Nervous System Diseases/physiopathology; Autoimmune Diseases of the Nervous System/etiology
  11. Joshi G, Ling APK, Chye SM, Koh RY
    CNS Neurol Disord Drug Targets, 2023;22(3):431-440.
    PMID: 35400348 DOI: 10.2174/1871527321666220408105130
    The behavior of an individual changes from neonate to elderly due to the development of the central nervous system (CNS). One of the important components of the CNS is the cerebrospinal fluid (CSF), which bathes the brain and spinal cord. CSF has changing properties throughout life, including composition and volume imbalance. However, a specific age group that shows prevailing abnormality- corresponding behavior remains unclear. The objective of this article is to explore how such changes reflect on one's psychological as well as physical processing. Production of CSF could be affected by many factors, including its flow, absorption, volume, and composition. Prenatally, congenital malformations and infections hold the greatest risk of impacting the child's physical and mental growth. In adolescents, transmission of external substances like alcohol or drugs in the cerebrospinal fluid is known to impact severe mood changes that potentially result in suicide and depression. In the adult working population, the influence of stress levels on CSF composition causes anxiety and sleep disorders. Finally, the reduced production of CSF was found to be associated with memory deficits and Alzheimer's disease in the aging group. From the collected evidence, it can be observed that CSF played an important role in behavioral changes and may be associated with neurodegenerations. By linking the CSF abnormalities to the clinical symptoms at different stages of life, it may provide additional information in the diagnosis of diseases that are associated with neuropsychological changes.
    Matched MeSH terms: Central Nervous System/physiology
  12. Lin OA, Chuang PJ, Tseng YJ
    Regul Toxicol Pharmacol, 2023 Feb;138:105338.
    PMID: 36642324 DOI: 10.1016/j.yrtph.2023.105338
    New psychoactive substances (NPS) are substances of abuse that easily evade existing controlled drug regulations. This study conducted a systematic review on controlled drug regulations and analyzed the numbers of new psychoactive substances (NPS) reported in six East and Southeast Asian countries in comparison to US and UK from 2009 to 2020. Generally, more NPS were reported in the US (551) and UK (400), compared to Japan (379), China (221), Singapore (142), South Korea (99), Malaysia (41), and Taiwan (35). Legislative mechanisms including the specific listing of individual substances, generic control of a family of substances, analogue control of similar substances, temporary bans of new substances were evaluated. In this review, countries that have adopted a combination of legislative mechanisms were able to identify higher numbers of NPS for regulatory control, such as the US, UK, Japan, Singapore, and South Korea. These findings can provide references to countries like Malaysia and Taiwan, to strengthen NPS-related regulations nationally. Countries in the East and Southeast Asian region should be encouraged to collaborate more closely and to implement additional legislative approaches most relevant to the regional NPS trends to bridge the regulatory gap and to prevent the spread of emerging NPS.
    Matched MeSH terms: Central Nervous System Agents*
  13. Hindmarch CC, Ferguson AV
    J Physiol, 2016 Mar 15;594(6):1581-9.
    PMID: 26227400 DOI: 10.1113/JP270726
    The subfornical organ (SFO) is a circumventricular organ recognized for its ability to sense and integrate hydromineral and hormonal circulating fluid balance signals, information which is transmitted to central autonomic nuclei to which SFO neurons project. While the role of SFO was once synonymous with physiological responses to osmotic, volumetric and cardiovascular challenge, recent data suggest that SFO neurons also sense and integrate information from circulating signals of metabolic status. Using microarrays, we have confirmed the expression of receptors already described in the SFO, and identified many novel transcripts expressed in this circumventricular organ including receptors for many of the critical circulating energy balance signals such as adiponectin, apelin, endocannabinoids, leptin, insulin and peptide YY. This transcriptome analysis also identified SFO transcripts, the expressions of which are significantly changed by either 72 h dehydration, or 48 h starvation, compared to fed and euhydrated controls. Expression and potential roles for many of these targets are yet to be confirmed and elucidated. Subsequent validation of data for adiponectin and leptin receptors confirmed that receptors for both are expressed in the SFO, that discrete populations of neurons in this tissue are functionally responsive to these adipokines, and that such responsiveness is regulated by physiological state. Thus, transcriptomic analysis offers great promise for understanding the integrative complexity of these physiological systems, especially with development of technologies allowing description of the entire transcriptome of single, carefully phenotyped, SFO neurons. These data will ultimately elucidate mechanisms through which these uniquely positioned neurons respond to and integrate complex circulating signals.
    Matched MeSH terms: Autonomic Nervous System/physiology*
  14. Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, et al.
    Am J Pathol, 2002 Dec;161(6):2153-67.
    PMID: 12466131
    In 1998, an outbreak of acute encephalitis with high mortality rates among pig handlers in Malaysia led to the discovery of a novel paramyxovirus named Nipah virus. A multidisciplinary investigation that included epidemiology, microbiology, molecular biology, and pathology was pivotal in the discovery of this new human infection. Clinical and autopsy findings were derived from a series of 32 fatal human cases of Nipah virus infection. Diagnosis was established in all cases by a combination of immunohistochemistry (IHC) and serology. Routine histological stains, IHC, and electron microscopy were used to examine autopsy tissues. The main histopathological findings included a systemic vasculitis with extensive thrombosis and parenchymal necrosis, particularly in the central nervous system. Endothelial cell damage, necrosis, and syncytial giant cell formation were seen in affected vessels. Characteristic viral inclusions were seen by light and electron microscopy. IHC analysis showed widespread presence of Nipah virus antigens in endothelial and smooth muscle cells of blood vessels. Abundant viral antigens were also seen in various parenchymal cells, particularly in neurons. Infection of endothelial cells and neurons as well as vasculitis and thrombosis seem to be critical to the pathogenesis of this new human disease.
    Matched MeSH terms: Central Nervous System/pathology; Central Nervous System/virology; Central Nervous System Viral Diseases/diagnosis; Central Nervous System Viral Diseases/epidemiology; Central Nervous System Viral Diseases/pathology; Central Nervous System Viral Diseases/virology
  15. Kimura K, Yokoyama K, Sato H, Nordin RB, Naing L, Kimura S, et al.
    Ind Health, 2005 Apr;43(2):285-94.
    PMID: 15895843
    We examined the effects of pesticides on the central and peripheral nervous system in the setting of a tobacco farm at a developing country. Maximal motor and sensory nerve conduction velocities (MCV and SCV, respectively) in the median, sural and tibial nerves, postural sway, and brain-evoked potentials (auditory event-related and visual-evoked potentials) were measured in 80 male tobacco farmers and age- and sex-matched 40 controls in Kelantan, Malaysia. Median SCV (finger-wrist) in farmers using Delsen (mancozeb, dithiocarbamate fungicide), who showed significant decrease of serum cholinesterase activities, were significantly lower compared with the controls. Sural SCV in farmers using Fastac (alpha-cypermethrin, pyrethroid insecticide) and median MCV (elbow-wrist) in farmers using Tamex (butralin, dinitroaniline herbicide) were significantly slowed compared with their respective controls. In Delsen (mancozeb, dithiocarbamate) users, the power of postural sway of 0-1 Hz was significantly larger than that in the controls both in the anterior-posterior direction with eyes open and in the right-left direction with eyes closed. The former type of sway was also significantly increased in Tamaron (methamidophos, organophosphorus insecticide) users. In conclusion, nerve conduction velocities and postural sway seem to be sensitive indicators of the effects of pesticides on the central and peripheral nervous system.
    Matched MeSH terms: Central Nervous System/physiopathology*; Peripheral Nervous System/physiopathology*
  16. Baig AM, Khan NA
    Microb Pathog, 2015 Nov;88:48-51.
    PMID: 26276705 DOI: 10.1016/j.micpath.2015.08.005
    Granulomatous amoebic encephalitis due to Acanthamoeba is a chronic disease that almost always results in death. Hematogenous spread is a pre-requisite followed by amoebae invasion of the blood-brain barrier to enter the central nervous system. Given the systemic nature of this infection, a significant latent period of several months before the appearance of clinical manifestations is puzzling. Based on reported cases, here we propose pathogenetic mechanisms that explain the above described latency of the disease.
    Matched MeSH terms: Central Nervous System
  17. Rohaizak M, Meah FA
    Med J Malaysia, 2002 Jun;57(2):218-20.
    PMID: 24326656
    Schwannomas are rare tumours arising from peripheral nerve linings. A case of a schwannoma arising from cervical sympathetic chain is presented. The clinical presentation was that of a right solitary thyroid nodule. Intra-operatively, a 3 x 3 cm encapsulated lesion was seen arising posterior to the vagas nerve and attached to the cervical sympathetic trunk. The lesion was excised together with part of the nerve. Post-operatively, the patient developed Horner's syndrome that persisted. Unitil 2000, less that 50 cased of cervical sympathetic schwannoma have been described in the Englidh literature. A brief description of the pathology, presentation, diagnosis and treatment of this condition is presented.
    Matched MeSH terms: Sympathetic Nervous System
  18. Kuczkowski KM
    Med J Malaysia, 2003 Mar;58(1):147-54; quiz 155.
    PMID: 14556345
    Maternal use of social drugs in pregnancy continues to increase--worldwide. Although a great deal has been learned regarding the implications of illicit drug abuse in pregnancy (cocaine, amphetamines, hallucinogens), the use of social drug in pregnancy has received far less attention. This article reviews the consequences of the social drug use in pregnancy including ethanol, tobacco and caffeine and offers recommendation for anaesthetic management of these potentially complicated pregnancies.
    Matched MeSH terms: Central Nervous System Stimulants/adverse effects*; Central Nervous System Depressants/adverse effects*
  19. Yang C, Li X, Li S, Chai X, Guan L, Qiao L, et al.
    J Cell Mol Med, 2019 03;23(3):1813-1826.
    PMID: 30565384 DOI: 10.1111/jcmm.14080
    Organotypic slice culture is a living cell research technique which blends features of both in vivo and in vitro techniques. While organotypic brain slice culture techniques have been well established in rodents, there are few reports on the study of organotypic slice culture, especially of the central nervous system (CNS), in chicken embryos. We established a combined in ovo electroporation and organotypic slice culture method to study exogenous genes functions in the CNS during chicken embryo development. We performed in ovo electroporation in the spinal cord or optic tectum prior to slice culture. When embryonic development reached a specific stage, green fluorescent protein (GFP)-positive embryos were selected and fluorescent expression sites were cut under stereo fluorescence microscopy. Selected tissues were embedded in 4% agar. Tissues were sectioned on a vibratory microtome and 300 μm thick sections were mounted on a membrane of millicell cell culture insert. The insert was placed in a 30-mm culture dish and 1 ml of slice culture media was added. We show that during serum-free medium culture, the slice loses its original structure and propensity to be strictly regulated, which are the characteristics of the CNS. However, after adding serum, the histological structure of cultured-tissue slices was able to be well maintained and neuronal axons were significantly longer than that those of serum-free medium cultured-tissue slices. As the structure of a complete single neuron can be observed from a slice culture, this is a suitable way of studying single neuronal dynamics. As such, we present an effective method to study axon formation and migration of single neurons in vitro.
    Matched MeSH terms: Central Nervous System/cytology*; Central Nervous System/embryology; Central Nervous System/metabolism
  20. Mohd Yusmiaidil Putera Mohd Yusof
    MyJurnal
    In legal system, the admissibility of bite mark injury has proven to give more positive impact when current tech-nologies are adapted to its analysis. The early exposure of the digitalized bite mark analysis during the under-graduate dental program is beneficial to stimulate interests and provide guidance among the professional den-tists. The step-by-step bite mark analysis partly adapted from KU Leuven, Belgium is emphasized by delivering the illustrated practical techniques using computer software Adobe Photoshop®. The overlays analysis demon-strated its practicality as easy to use and offered opportunities to learn through unconventional mode of teach-ing. The incorporation of bite mark injury analysis to the undergraduate dental learning is highly recommended
    Matched MeSH terms: Central Nervous System Stimulants
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links