Displaying publications 81 - 100 of 190 in total

Abstract:
Sort:
  1. Abdul Hamid Z, Budin SB, Wen Jie N, Hamid A, Husain K, Mohamed J
    J Zhejiang Univ Sci B, 2012 Mar;13(3):176-85.
    PMID: 22374609 DOI: 10.1631/jzus.B1100133
    Paracetamol (PCM) overdose can cause nephrotoxicity with oxidative stress as one of the possible mechanisms mediating the event. In this study, the effects of ethyl acetate extract of Zingiber zerumbet rhizome [200 mg per kg of body weight (mg/kg) and 400 mg/kg] on PCM-induced nephrotoxicity were examined. Rats were divided into five groups containing 10 rats each. The control group received distilled water while other groups were treated with extract alone (400 mg/kg), PCM alone (750 mg/kg), 750 mg/kg PCM+200 mg/kg extract (PCM+200-extract), and 750 mg/kg PCM+400 mg/kg extract (PCM+400-extract), respectively, for seven consecutive days. The Z. zerumbet extract was given intraperitoneally concurrent with oral administration of PCM. Treatment with Z. zerumbet extract at doses of 200 and 400 mg/kg prevented the PCM-induced nephrotoxicity and oxidative impairments of the kidney, as evidenced by a significantly reduced (P<0.05) level of plasma creatinine, plasma and renal malondialdehyde (MDA), plasma protein carbonyl, and renal advanced oxidation protein product (AOPP). Furthermore, both doses were also able to induce a significant increment (P<0.05) of plasma and renal levels of glutathione (GSH) and plasma superoxide dismutase (SOD) activity. The nephroprotective effects of Z. zerumbet extract were confirmed by a reduced intensity of renal cellular damage, as evidenced by histological findings. Moreover, Z. zerumbet extract administered at 400 mg/kg was found to show greater protective effects than that at 200 mg/kg. In conclusion, ethyl acetate extract of Z. zerumbet rhizome has a protective role against PCM-induced nephrotoxicity and the process is probably mediated through its antioxidant properties.
    Matched MeSH terms: Plant Extracts/administration & dosage
  2. Ghorbani P, Soltani M, Homayouni-Tabrizi M, Namvar F, Azizi S, Mohammad R, et al.
    Molecules, 2015;20(7):12946-58.
    PMID: 26193248 DOI: 10.3390/molecules200712946
    The development of reliable and ecofriendly approaches for the production of nanomaterials is a significant aspect of nanotechnology nowadays. One of the most important methods, which shows enormous potential, is based on the green synthesis of nanoparticles using plant extract. In this paper, we aimed to develop a rapid, environmentally friendly process for the synthesis silver nanoparticles using aqueous extract of sumac. The bioactive compounds of sumac extract seem to play a role in the synthesis and capping of silver nanoparticles. Structural, morphological and optical properties of the nanoparticles were characterized using FTIR, XRD, FESEM and UV-Vis spectroscopy. The formation of Ag-NP was immediate within 10 min and confirmed with an absorbance band centered at 438 nm. The mean particle size for the green synthesized silver nanoparticles is 19.81 ± 3.67 nm and is fairly stable with a zeta potential value of -32.9 mV. The bio-formed Ag-NPs were effective against E. coli with a maximum inhibition zone of 14.3 ± 0.32 mm.
    Matched MeSH terms: Plant Extracts/administration & dosage
  3. Zolkiffly SZI, Stanslas J, Abdul Hamid H, Mehat MZ
    J Ethnopharmacol, 2021 Oct 28;279:114309.
    PMID: 34119609 DOI: 10.1016/j.jep.2021.114309
    ETHNOPHARMACOLOGICAL RELEVANCE: Ficus deltoidea Jack (FD) is widely consumed in traditional medicine as a treatment for various diseases in Malaysia. Each part of the plant such as its leave, stem, fruit and root are used traditionally to treat different types of diseases. Vitexin and isovitexin are bioactive compounds abundantly found in the leaves of FD that possessed many pharmacological properties including neuroprotection. Nonetheless, its effects on key events in neuroinflammation are unknown.

    AIM OF THE STUDY: To determine the inhibitory properties of FD aqueous extract on pro-inflammatory mediators involved in lipopolysaccharide (LPS)-induced microglial cells.

    METHODS: Vitexin and isovitexin in the extract were quantified via high performance liquid chromatography (HPLC). The extract was evaluated for its cytotoxicity activity via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Pre-treatment with the extract on LPS-induced microglial cells was done to determine its antioxidant and anti-neuroinflammatory properties by measuring the level of reactive oxygen species (ROS), nitric oxide (NO), tumour necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) via 2'-7'-dichlorofluorescin diacetate (DCFDA) assay, Griess assay and Western blot respectively.

    RESULTS: The extract at all tested concentrations (0.1 μg/mL, 1 μg/mL, 10 μg/mL, 100 μg/mL) were not cytotoxic as the percentage viability of microglial cells were all above ~80%. At the highest concentration (100 μg/mL), the extract significantly reduced the formation of ROS, NO, TNF-α, IL-1β and IL-6 in microglial cells induced by LPS.

    CONCLUSION: The extract showed neuroprotective effects by attenuating the levels of pro-inflammatory and cytotoxic factors in LPS-induced microglial cells, possibly by mediating the nuclear factor-kappa B (NF-κB) signalling pathway.

    Matched MeSH terms: Plant Extracts/administration & dosage
  4. Rahim SM, Taha EM, Al-janabi MS, Al-douri BI, Simon KD, Mazlan AG
    PMID: 25435631
    BACKGROUND: Cymbopogon citratus (Poaceae) a tropical perennial herb plant that is widely cultivated to be eaten either fresh with food or dried in tea or soft drink has been reported to possess a number of medicinal and aromatic properties. This study aimed at evaluating the protective effects of C. citratus aqueous extract against liver injury induced by hydrogen peroxide (H2O2), in male rats.

    MATERIALS AND METHODS: Twenty-five rats were randomly divided into five different groups of five animals in each group; (1) Control. (2) Received H2O2 (0.5%) with drinking water. (3), and (4) received H2O2 and C. citratus (100 mg·kg(-1) b wt), vitamin C (250 mg·kg(-1) b wt) respectively. (5), was given C. citratus alone. The treatments were administered for 30 days. Blood samples were collected and serum was used for biochemical assay including liver enzymes activities, total protein, total bilirubin and malonaldehyde, glutathione in serum and liver homogenates. Liver was excised and routinely processed for histological examinations.

    RESULTS: C. citratus attenuated liver damage due to H2O2 administration as indicated by the significant reduction (p<0.05), in the elevated levels of ALT, AST, ALP, LDH, TB, and MDA in serum and liver homogenates; increase in TP and GSH levels in serum and liver homogenates; and improvement of liver histo-pathological changes. These effects of the extract were similar to that of vitamin C which used as antioxidant reference.

    CONCLUSION: C. citratus could effectively ameliorate H2O2-induced oxidative stress and prevent liver injury in male rats.

    Matched MeSH terms: Plant Extracts/administration & dosage*
  5. Chong UR, Abdul-Rahman PS, Abdul-Aziz A, Hashim OH, Mat-Junit S
    Biomed Res Int, 2013;2013:459017.
    PMID: 24455694 DOI: 10.1155/2013/459017
    The fruit pulp extract of Tamarindus indica has been reported for its antioxidant and hypolipidemic properties. In this study, the methanol extract of T. indica fruit pulp was investigated for its effects on the abundance of HepG2 cell lysate proteins. Cell lysate was extracted from HepG2 cells grown in the absence and presence of the methanol extract of T. indica fruit pulp. Approximately 2500 spots were resolved using two-dimensional gel electrophoresis and the abundance of 20 cellular proteins was found to be significantly reduced. Among the proteins of reduced abundance, fourteen, including six proteins involved in metabolism (including ethanolamine phosphate cytidylyltransferase), four mitochondrial proteins (including prohibitin and respiratory chain proteins), and four proteins involved in translation and splicing, were positively identified by mass spectrometry and database search. The identified HepG2 altered abundance proteins, when taken together and analyzed by Ingenuity Pathways Analysis (IPA) software, are suggestive of the effects of T. indica fruit pulp extract on metabolism and inflammation, which are modulated by LXR/RXR. In conclusion, the methanol fruit pulp extract of T. indica was shown to cause reduced abundance of HepG2 mitochondrial, metabolic, and regulatory proteins involved in oxidative phosphorylation, protein synthesis, and cellular metabolism.
    Matched MeSH terms: Plant Extracts/administration & dosage*
  6. Ali Khan MS, Nazan S, Mat Jais AM
    Arq Gastroenterol, 2017 Jul-Sep;54(3):183-191.
    PMID: 28492713 DOI: 10.1590/S0004-2803.201700000-21
    BACKGROUND: Leathery Murdah, Terminalia coriacea (Roxb.) Wight & Arn. from family Combretaceae is used in Ayurveda and Siddha traditional systems of medicine to heal ulcers.

    OBJECTIVE: The present study was conducted to assess the gastroprotective effect and understand the fundamental mechanism of action of Leathery Murdah, Terminalia coriacea (Roxb.) Wight & Arn. Leaf Methanolic Extract.

    METHODS: The test extract was screened for anti-ulcer activity by Aspirin induced ulcerogenesis in pyloric ligation and ethanol induced gastric ulcers at three doses - 125, 250, and 500 mg/kg, p.o. using Ranitidine 50 mg/kg and Misoprostol 100 μg/kg as standard drug in respective models. Seven parameters were carefully examined, that is, ulcer index, total protein, mucin, catalase, malondialdehyde, and superoxide dismutase levels and histopathology. High Performance Liquid Chromatographic - Ultra Violet profiling and Liquid Chromatography - Mass Spectral analysis of crude Terminalia coriacea leaves methanolic extract were carried out as a part of chemical characterization to identify bioactive compounds.

    RESULTS: All the test doses exhibited significant gastroprotective function, particularly the higher doses demonstrated improved action. The results revealed a significant increase in the levels of catalase, superoxide dismutase, and Mucin with reduction in ulcer index, the levels of total protein, and malondialdehyde. Histopathological observations also illustrated the gastroprotective effect of Terminalia coriacea leaves methanolic extract.

    CONCLUSION: Terminalia coriacea leaves methanolic extract exhibited strong anti-oxidant and anti-secretory activities mediated gastroprotection besides inducing the gastric mucosal production. The observed pharmacological response can be attributed to the flavonoidal compounds namely - Quercetin-3-O-rutinoside, Luteolin-7-O-glucoside, Myricetin hexoside, Quercetin-3-O-glucoside, Isorhamnetin-3-O-rhamnosylglucoside and Isorhamnetin-3-O-glucoside identified in the extract for the first time with High Performance Liquid Chromatographic - Ultra Violet and Liquid Chromatography - Mass Spectral analysis.
    Matched MeSH terms: Plant Extracts/administration & dosage*
  7. You YX, Shahar S, Rajab NF, Haron H, Yahya HM, Mohamad M, et al.
    Nutrients, 2021 Jan 29;13(2).
    PMID: 33572715 DOI: 10.3390/nu13020434
    Cosmos caudatus (CC) contains high flavonoids and might be beneficial in neuroprotection. It has the potential to prevent neurodegenerative diseases. Therefore, we aimed to investigate the effects of 12 weeks of Cosmos caudatus supplement on cognitive function, mood status, blood biochemical profiles and biomarkers among older adults with mild cognitive impairment (MCI) through a double-blind, placebo-controlled trial. The subjects were randomized into CC supplement (n = 24) and placebo group (n = 24). Each of them consumed one capsule of CC supplement (250 mg of CC/capsule) or placebo (500 mg maltodextrin/capsule) twice daily for 12 weeks. Cognitive function and mood status were assessed at baseline, 6th week, and 12th week using validated neuropsychological tests. Blood biochemical profiles and biomarkers were measured at baseline and 12th week. Two-way mixed analysis of variance (ANOVA) analysis showed significant improvements in mini mental state examination (MMSE) (partial η2 = 0.150, p = 0.049), tension (partial η2 = 0.191, p = 0.018), total mood disturbance (partial η2 = 0.171, p = 0.028) and malondialdehyde (MDA) (partial η2 = 0.097, p = 0.047) following CC supplementation. In conclusion, 12 weeks CC supplementation potentially improved global cognition, tension, total mood disturbance, and oxidative stress among older adults with MCI. Larger sample size and longer period of intervention with incorporation of metabolomic approach should be conducted to further investigate the underlying mechanism of CC supplementation in neuroprotection.
    Matched MeSH terms: Plant Extracts/administration & dosage*
  8. Singh D, Murugaiyah V, Hamid SBS, Kasinather V, Chan MSA, Ho ETW, et al.
    J Ethnopharmacol, 2018 Jul 15;221:30-36.
    PMID: 29626673 DOI: 10.1016/j.jep.2018.04.005
    ETHNOPHARMACOLOGICAL RELEVANCE: Mitragyna speciosa (Korth.) also known as kratom, is a native medicinal plant of Southeast Asia with opioid-like effects. Kratom tea/juice have been traditionally used as a folk remedy and for controlling opiate withdrawal in Malaysia. Long-term opioid use is associated with depletion in testosterone levels.

    AIM OF THE STUDY: Since kratom is reported to deform sperm morphology and reduce sperm motility, we aimed to clinically investigate the testosterone levels following long-term kratom tea/juice use in regular kratom users.

    METHODS: A total of 19 regular kratom users were recruited for this cross-sectional study. A full-blood test was conducted including determination of testosterone level, follicle stimulating hormone (FSH) and luteinizing hormone (LH) profile, as well as hematological and biochemical parameters of participants.

    RESULTS: We found long-term kratom tea/juice consumption with a daily mitragynine dose of 76.23-94.15 mg did not impair testosterone levels, or gonadotrophins, hematological and biochemical parameters in regular kratom users.

    CONCLUSION: Regular kratom tea/juice consumption over prolonged periods (>2 years) was not associated with testosterone impairing effects in humans.

    Matched MeSH terms: Plant Extracts/administration & dosage*
  9. Singh D, Müller CP, Murugaiyah V, Hamid SBS, Vicknasingam BK, Avery B, et al.
    J Ethnopharmacol, 2018 Mar 25;214:197-206.
    PMID: 29248450 DOI: 10.1016/j.jep.2017.12.017
    ETHNOPHARMACOLOGICAL RELEVANCE: Kratom (Mitragyna speciosa Korth.) from the Rubiaceae family is an indigenous tropical medicinal tree of Southeast Asia. Kratom leaves have been used for decades in Malaysia and Thailand in traditional context for its perceived vast medicinal value, and as a mild stimulant among manual labourers. Kratom consumption has been reported to cause side-effects in kratom users.

    AIM OF THE STUDY: To evaluate kratom's effects towards hematological and clinical-chemistry parameters among regular kratom users in Malaysia.

    METHODS: A total of 77 subjects (n=58 regular kratom users, and n=19 healthy controls) participated in this cross-sectional study. All the surveys were conducted through face-to-face interview to elicit subject's socio-demographic characteristics and kratom use history. A full-blood test was also administered. Laboratory analysis was conducted using GC-MS to determine mitragynine content in the acquired kratom samples in order to relate mitragynine consumption with possible alterations in the blood parameters of kratom users.

    RESULTS: Findings showed that there were no significant differences in the hematological and clinical-chemistry parameters of traditional kratom users and healthy controls, except for HDL and LDL cholesterol values; these were found to be above the normal reference range for the former. Similarly, long-term kratom consumption (>5 years), and quantity of daily kratom use (≥3 ½ glasses; mitragynine content 76.3-114.8mg) did not appear to alter the hematological and biochemical parameters of kratom users.

    CONCLUSION: These data suggest that even long-term and heavy kratom consumption did not significantly alter the hematological and clinical-chemistry parameters of kratom users in a traditional setting.

    Matched MeSH terms: Plant Extracts/administration & dosage*
  10. Ngaha Njila MI, Massoma Lembè D, Koloko BL, Yong Meng G, Ebrahimi M, Awad EA, et al.
    Andrologia, 2019 Oct;51(9):e13359.
    PMID: 31353623 DOI: 10.1111/and.13359
    The effect of the methanolic extract of Alchornea cordifolia leaves on the fertility of senescent male rats was assessed in this study. 40 rats received daily distilled water, testosterone, 200 and 400 mg/kg of extract of Alchornea cordifolia. The reproductive organs weight, the gonadotropins, testosterone and cholesterol level, the sperm parameters, histology of the testes and epididymis were assessed. The weight of testes and prostate (400 mg/kg) significantly increased (p 
    Matched MeSH terms: Plant Extracts/administration & dosage*
  11. Aisha AF, Abu-Salah KM, Ismail Z, Majid AM
    PMID: 22818000
    BACKGROUND: Xanthones are a group of oxygen-containing heterocyclic compounds with remarkable pharmacological effects such as anti-cancer, antioxidant, anti-inflammatory, and antimicrobial activities.
    METHODS: A xanthones extract (81% α-mangostin and 16% γ-mangostin), was prepared by crystallization of a toluene extract of G. mangostana fruit rinds and was analyzed by LC-MS. Anti-colon cancer effect was investigated on HCT 116 human colorectal carcinoma cells including cytotoxicity, apoptosis, anti-tumorigenicity, and effect on cell signalling pathways. The in vivo anti-colon cancer activity was also investigated on subcutaneous tumors established in nude mice.
    RESULTS: The extract showed potent cytotoxicity (median inhibitory concentration 6.5 ± 1.0 μg/ml), due to induction of the mitochondrial pathway of apoptosis. Three key steps in tumor metastasis including the cell migration, cell invasion and clonogenicity, were also inhibited. The extract and α-mangostin up-regulate the MAPK/ERK, c-Myc/Max, and p53 cell signalling pathways. The xanthones extract, when fed to nude mice, caused significant growth inhibition of the subcutaneous tumor of HCT 116 colorectal carcinoma cells.
    CONCLUSIONS: Our data suggest new mechanisms of action of α-mangostin and the G. mangostana xanthones, and suggest the xanthones extract of as a potential anti-colon cancer candidate.
    Matched MeSH terms: Plant Extracts/administration & dosage*
  12. Akinboro A, Mohamed KB, Asmawi MZ, Othman AS, Ying TH, Maidin SM
    Drug Chem Toxicol, 2012 Oct;35(4):412-22.
    PMID: 22149219 DOI: 10.3109/01480545.2011.638300
    The role of diets in causing cancers necessitates the ongoing search for natural antimutagens of promising anticancer therapeutics. This study determined the potential anticancer efficacy of the leaf extract of Myristica fragrans (Houtt.). Methanol leaf extract of M. fragrans (Houtt.) alone was screened for mutagenicity in the bacterial reverse mutation (Ames) test, using the Salmonella typhimurium TA100 strain, the Allium cepa, and the mouse in vivo bone marrow micronucleus tests. The antimutagenicity of this extract against benzo[a]pyrene- and cyclophosphamide-induced mutations was evaluated. An antioxidant test on the extract was performed with 2,2-diphenyl-1-picrylhydrazyl, using butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) as the standards, whereas its phytochemicals were elucidated by following the gas chromatography/mass spectrometry protocol. In S. typhimurium (TA100), the mutagenicity ratio at 200,500 and 1,000 µg/well was >2. Cell division in the A. cepa root tips and mouse bone marrow was significantly (P ≤ 0.05) inhibited at 2,000 and 4,000 mg/kg, whereas the observed chromosomal aberrations and micronucleated polychromatic erythrocytes were non-dose-related and were insignificantly (P ≥ 0.05) different from the negative control. Inhibition of benzo[a]pyrene- and cyclophosphamide-induced mutagenicity by this extract was above 40%. Half-maximal inhibitory concentration of the extract in the antioxidant test was lower than that of BHA and BHT. Phytochemical compounds, possessing antioxidant activity, may be responsible for the observed effects, suggesting a strong antimutagenic activity of the MeOH leaf extract of M. fragrans, a necessary characteristic of a promising anticancer agent.
    Matched MeSH terms: Plant Extracts/administration & dosage
  13. Cheurfa M, Abdallah HH, Allem R, Noui A, Picot-Allain CMN, Mahomoodally F
    Food Chem Toxicol, 2019 Jan;123:98-105.
    PMID: 30292622 DOI: 10.1016/j.fct.2018.10.002
    Aqueous and ethanol extracts prepared from leaves of Olea europaea L. were evaluated for in vitro antioxidant and in vivo hypocholesterolemic effect. The result of administration of O. europaea leaf extracts on serum total cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) in hypercholesterolaemic mice was evaluated. In addition, rutin and luteolin, reported to occur naturally in O. europaea leaves, were docked against HMG-CoA reductase, the rate-limiting enzyme in cholesterol metabolism. Mice treated with both extracts showed reduced total cholesterol (246.6 and 163.4 mg/dl, for mice groups treated with respective extracts) and LDL (150.16 and 81.28 mg/dl, for mice groups treated with respective extracts) levels as compared to the hypercholesterolaemic group (total cholesterol 253.00 mg/dl and LDL 160.00 mg/dl). Mice treated with aqueous extract (200 mg/kg body weight) showed significantly reduced triglyceride and VLDL levels as compared to the group treated with atorvastatine. HDL level of mice administered with O. europaea aqueous extract was comparable to the atorvastatine-treated group. The ethanol extract of O. europeae leaves was a potent antioxidant (IC50 69.15 mg/ml, % inhibition 54.98, 82.63 mg ascorbic acid equivalent/g extract, 7.53 mol of Fe2+/g extract, and % inhibition 49.71, for the DPPH, β-carotene bleaching, total antioxidant capacity, FRAP, and ferric thiocyanate assays, respectively). Docking studies revealed that rutin showed higher binding affinity with HMG-CoA reductase as compared to luteolin. Data gathered from this study support the development of a prophylactic biomedicine from O. europaea leaves for the management of hypercholesterolemia and atherosclerosis.
    Matched MeSH terms: Plant Extracts/administration & dosage*
  14. Ng PL, Rajab NF, Then SM, Mohd Yusof YA, Wan Ngah WZ, Pin KY, et al.
    J Zhejiang Univ Sci B, 2014 Aug;15(8):692-700.
    PMID: 25091987 DOI: 10.1631/jzus.B1300303
    OBJECTIVE: The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated.
    METHODS: HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds.
    RESULTS: In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 µmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively.
    CONCLUSIONS: In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway.
    KEYWORDS: 5-Fluorouracil; Herb-drug interaction; Isobologram analysis; Piper betle L.; Piperaceae
    Matched MeSH terms: Plant Extracts/administration & dosage
  15. Abuzeid N, Kalsum S, Koshy RJ, Larsson M, Glader M, Andersson H, et al.
    J Ethnopharmacol, 2014 Nov 18;157:134-9.
    PMID: 25261689 DOI: 10.1016/j.jep.2014.09.020
    The emergence of multidrug-resistant strains of Mycobacterium tuberculosis underscores the need for continuous development of new and efficient methods to determine the susceptibility of isolates of Mycobacterium tuberculosis in the search for novel antimycobacterial agents. Natural products constitute an important source of new drugs, and design and implementation of antimycobacterial susceptibility testing methods are necessary to evaluate the different extracts and compounds. In this study we have explored the antimycobacterial properties of 50 ethanolic extracts from different parts of 46 selected medicinal plants traditionally used in Sudan to treat infectious diseases.
    Matched MeSH terms: Plant Extracts/administration & dosage
  16. Chong PZ, Ng HY, Tai JT, Lee SWH
    Am J Chin Med, 2020;48(3):513-534.
    PMID: 32349519 DOI: 10.1142/S0192415X20500263
    Ginkgo biloba and its extract have been suggested to have a neuroprotective role in patients with acute ischemic stroke. We aimed to examine the efficacy and safety of Ginkgo biloba use in patients with acute ischemic stroke. We searched seven databases for randomized controlled studies examining the use of Ginkgo biloba in patients with acute ischemic stroke. Relevant studies were retrieved, screened, and data were extracted independently by two reviewers. Random effects meta-analyses were performed to evaluate the efficacy and safety outcomes of Ginkgo biloba. We subsequently assessed the certainty of evidence using the GRADE (Grading of Recommendation Assessment, Development and Evaluation) methodology. We found 12 randomized controlled studies enrolling 1466 patients. Pooled results suggest that Ginkgo biloba use was associated with an improvement in neurological function among individuals with AIS with a reduction of 2.87 points on the National Institute of Health Stroke Scale score (95% CI:
    -
    4
    .
    0
    1
    -
    -
    1
    .
    7
    4
    ,
    p
    <
    0
    .
    0
    0
    1
    ). Ginkgo biloba use was also associated with an improvement in activities of daily living and functional outcome (Mean Difference: 9.52; 4.66-14.33,
    p
    <
    0
    .
    0
    0
    1
    ). Subgroup analysis suggest that the impact was larger when using an injectable formulation of Ginkgo biloba compared to the oral formulation. There was no apparent impact of Ginkgo biloba use on all-cause mortality (Risk ratio (RR): 1.21; 0.29-5.09,
    p
    =
    0
    .
    8
    0
    ) or cerebrovascular bleeding (RR: 0.82; 0.43-1.57,
    p
    =
    0
    .
    5
    5
    ). There was limited evidence on to support the use of gingko biloba in terms of improving quality of life and other stroke events. As such, more studies are needed before it can be recommended for routine use in improving neurological and cognitive function in patients with acute ischemic stroke.
    Matched MeSH terms: Plant Extracts/administration & dosage
  17. Sulaiman MR, Tengku Mohamad TA, Shaik Mossadeq WM, Moin S, Yusof M, Mokhtar AF, et al.
    Planta Med, 2010 Feb;76(2):107-12.
    PMID: 19637111 DOI: 10.1055/s-0029-1185950
    In the present study, the rhizome essential oil from Zingiber zerumbet (Zingiberaceae) was evaluated for antinociceptive activity using chemical and thermal models of nociception, namely, the acetic acid-induced abdominal writhing test, the hot-plate test and the formalin-induced paw licking test. It was demonstrated that intraperitoneal administration of the essential oil of Z. zerumbet (EOZZ) at the doses of 30, 100 and 300 mg/kg produced significant dose-dependent inhibition of acetic acid-induced abdominal writhing, comparable to that of obtained with acetylsalicylic acid (100 mg/kg). At the same doses, the EOZZ produced significant dose-dependent increases in the latency time in the hot-plate test with respect to controls, and in the formalin-induced paw licking test, the EOZZ also significantly reduced the painful stimulus in both neurogenic and inflammatory phase of the test. In addition, the antinociceptive effect of the EOZZ in the formalin-induced paw licking test as well as hot-plate test was reversed by the nonselective opioid receptor antagonist, naloxone suggesting that the opioid system was involved in its analgesic mechanism of action. On the basis of these data, we concluded that the EOZZ possessed both central and peripheral antinociceptive activities which justifying its popular folkloric use to relieve some pain conditions.
    Matched MeSH terms: Plant Extracts/administration & dosage
  18. Sulaiman MR, Mohd Padzil A, Shaari K, Khalid S, Shaik Mossadeq WM, Mohamad AS, et al.
    J Biomed Biotechnol, 2010;2010:937642.
    PMID: 21274262 DOI: 10.1155/2010/937642
    Melicope ptelefolia is a medicinal herb commonly used in Malaysia to treat fever, pain, wounds, and itches. The present study was conducted to evaluate the antinociceptive activity of the Melicope ptelefolia ethanolic extract (MPEE) using animal models of nociception. The antinociceptive activity of the extract was assessed using acetic acid-induced abdominal writhing, hot-plate, and formalin-induced paw licking tests. Oral administration of MPEE produced significant dose-dependent antinociceptive effects when tested in mice and rats using acetic acid-induced abdominal constriction test and on the second phase of the formalin-induced paw licking test, respectively. It was also demonstrated that MPEE had no effect on the response latency time to the heat stimulus in the thermal model of the hot-plate test. In addition, the antinociception produced by MPEE was not blocked by naloxone. Furthermore, oral administration of MPEE did not produce any effect in motor performance of the rota-rod test and in acute toxicity study no abnormal behaviors as well as mortality were observed up to a dose level of the extract of 5 g/kg. These results indicated that MPEE at all doses investigated which did not produce any sedative and toxic effects exerted pronounce antinociceptive activity that acts peripherally in experimental animals.
    Matched MeSH terms: Plant Extracts/administration & dosage
  19. Haleagrahara N, Jackie T, Chakravarthi S, Rao M, Kulur A
    J Toxicol Sci, 2010 Oct;35(5):663-71.
    PMID: 20930461
    Lead is known to disrupt the biological systems by altering the molecular interactions, cell signaling, and cellular function. Exposure to even low levels of lead may have potential hazardous effects on brain, liver, kidneys and testes. The efficacy of Etlingera elatior (torch ginger) to protect hepatotoxicity induced by lead acetate was evaluated experimentally in male Sprague - Dawley rats. Rats were exposed to lead acetate in drinking water (500 ppm) for 21 days and the effects of concurrent treatment with extract of E. elatior on hepatic lipid hydroperoxides (LPO), protein carbonyl content (PCC), total antioxidants (TA), superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione S- Transferase (GST) levels and histopathological changes in liver were evaluated. There was a significant decrease in TA and other antioxidant enzymes (p < 0.05) and increase in LPO and PCC (p < 0.05) with lead acetate ingestion. Concurrent treatment with E. elatior extract significantly reduced the LPO and PCC (p < 0.05) in serum and increased the antioxidant enzyme levels (p < 0.05) in the liver. Significant histopathological changes were seen in hepatic tissue with chronic lead ingestion. Treatment with E. elatior significantly reduced these lead-induced changes in hepatic architecture. E. elatior has also reduced the blood lead levels (BLL). Thus, there has been extensive biochemical and structural alterations indicative of liver toxicity with exposure to lead and E. elatior treatment significantly reduced these oxidative damage. Our results suggest that E. elatior has a powerful antioxidant effect against lead-induced hepatotoxicity.
    Matched MeSH terms: Plant Extracts/administration & dosage
  20. Romes NB, Abdul Wahab R, Abdul Hamid M, Oyewusi HA, Huda N, Kobun R
    Sci Rep, 2021 10 21;11(1):20851.
    PMID: 34675286 DOI: 10.1038/s41598-021-00409-0
    Nanoemulsion is a delivery system used to enhance bioavailability of plant-based compounds across the stratum corneum. Elaeis guineensis leaves are rich source of polyphenolic antioxidants, viz. gallic acid and catechin. The optimal E. guineensis leaves extract water-in-oil nanoemulsion was stable against coalescence, but it was under significant influence of Ostwald ripening over 90 days at 25 °C. The in-vitro permeability revealed a controlled and sustained release of the total phenolic compounds (TPC) of EgLE with a cumulative amount of 1935.0 ± 45.7 µgcm-2 after 8 h. The steady-state flux and permeation coefficient values were 241.9 ± 5.7 µgcm-2 h-1 and 1.15 ± 0.03 cm.h-1, respectively. The kinetic release mechanism for TPC of EgLE was best described by the Korsmeyer-Peppas model due to the highest linearity of R2 = 0.9961, indicating super case II transport mechanism. The in-silico molecular modelling predicted that the aquaporin-3 protein in the stratum corneum bonded preferably to catechin over gallic acid through hydrogen bonds due to the lowest binding energies of - 57.514 kcal/mol and - 8.553 kcal/mol, respectively. Thus, the in-silico study further verified that catechin could improve skin hydration. Therefore, the optimal nanoemulsion could be used topically as moisturizer to enhance skin hydration based on the in-silico prediction.
    Matched MeSH terms: Plant Extracts/administration & dosage
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links