Displaying publications 81 - 100 of 893 in total

Abstract:
Sort:
  1. Anwar S, Saleem H, Khurshid U, Ansari SY, Alghamdi S, Al-Khulaidi AWA, et al.
    Nat Prod Res, 2023 Mar;37(6):1023-1029.
    PMID: 35815778 DOI: 10.1080/14786419.2022.2097230
    In the present research, oleuropein (OLE) contents from two Saudi Arabian wild olive trees (Olea europaea L.) leaves (O1 and O2), were collected from two nearby geographical sites differing in altitudes, and were determined via UHPLC-MS analysis. Moreover, total bioactive contents, antioxidant, and cytotoxicity (against MCF-7 and MDA-MB-231 cells) potential were also evaluated. The sample (O2) was found to contain significantly (p 
    Matched MeSH terms: Plant Extracts/chemistry
  2. Alrabie A, Al-Rabie NA, Al Saeedy M, Al Adhreai A, Al-Qadsy I, Farooqui M
    Nat Prod Res, 2023 Mar;37(6):1016-1022.
    PMID: 35801965 DOI: 10.1080/14786419.2022.2097227
    Liquid Chromatography-Mass Spectrometry (LC-MS) analysis of methanol extract of Martynia annua seed revealed the presence of haploperozide and austricine. For safety, heavy metals content investigation of plant powder using the Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) technique showed that the toxic metals (Pb: 2.07 mg/kg; Cd: 0.07 mg/kg; and As: 0.18 mg/kg) concentrations were found to be below the permissible limit. The extract demonstrated significant antibacterial activity against E. coli (MIC value 125 g/mL). Furthermore, it was effective in inhibiting both α-glucosidase and α-amylase enzymes with a high percentage and IC50 values were 42.28 ± 0.39 µg/mL and 34.11 ± 0.31 µg/mL, respectively. These findings were supported by a molecular docking study, some of the phytochemicals showed higher docking score values than references. However, Martynia annua seeds are safe to consume because they contain low levels of toxic heavy metals and possess antibacterial and anti-diabetic properties.
    Matched MeSH terms: Plant Extracts/chemistry
  3. Manojkumar U, Kaliannan D, Srinivasan V, Balasubramanian B, Kamyab H, Mussa ZH, et al.
    Chemosphere, 2023 May;323:138263.
    PMID: 36858116 DOI: 10.1016/j.chemosphere.2023.138263
    Green synthesis of nanomaterials has emerged as an ecofriendly sustainable technology for the removal of dyes in the last few decades. Especially, plant leaf extracts have been considered as inexpensive and effective materials for the synthesis of nanoparticles. In this study, zinc oxide nanoparticles (ZnO NPs) were prepared using leaves extract of Brassica oleracea var. botrytis (BO) by co-precipitation and applied for photocatalytic/antibacterial activity. The synthesized BO-ZnO NPs was characterized by different instrumental techniques. The UV-vis Spectrum of the synthesized material showed maximum absorbance at a wavelength of 311 nm, which confirmed the formation of BO-ZnO NPs. The XRD pattern of BO-ZnO NPs represents a hexagonal wurtzite structure and the average size of particles was about 52 nm. FT-IR spectrum analysis confirms the presence of hydroxyl, carbonyl, carboxylic, and phenol groups. SEM images exhibited a flower like morphology and EDX spectrum confirming the presence of the elements Zn and O. Photo-catalytic activity of BO-ZnO NPs was tested against thiazine dye (methylene blue-MB) degradation under direct sunlight irradiation. Around 80% of the MB dye got degraded at pH 8 under 75 min of sunlight irradiation. Further, the study examined that the antimicrobial and larvicidal activity of BO-ZnO NPs obtained through green synthesis. The antimicrobial study results showed that the BO-ZnO NPs formed zones against bacterial pathogens. The results showed the formation of an inhibition zone against B. subtills (16 mm), S.aureus (13 mm), K. pneumonia (13 mm), and E. coli (9 mm) respectively at a concentration of 100 μg/mL of BO-ZnO NPs. The larvicidal activity of the BO-ZnO NPs was tested against the fourth instar of Culex quinquefasciatus mosquito larvae The LC50 and LC90 values estimated through the larvicidal activity of BO-ZnO NPs were 76.03, 190.03 ppm respectively. Hence the above findings propose the synthesized BO-ZnO NPs by the ecofriendly method can be used for various environmental and antipathogenic applications.
    Matched MeSH terms: Plant Extracts/chemistry
  4. Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Ku H, Tan WK, et al.
    J Pharm Biomed Anal, 2023 Apr 01;227:115308.
    PMID: 36827737 DOI: 10.1016/j.jpba.2023.115308
    Extracts of two Salvia species, Salvia apiana (white sage) and Salvia officinalis (common sage) were screened for phytoconstituents with the ability to act as antidiabetic, cognitive enhancing, or antimicrobial agents, by hyphenation of high-performance thin-layer chromatography with enzymatic and microbial effect directed assays. Two bioactive zones with α-amylase inhibition (zone 1 and zone 2), 3 zones for acetylcholinesterase inhibition (zones 3, 4 and 5), and two zones for antimicrobial activity (zones 4 and 5) were detected. The compounds from the five bioactive zones were initially identified by coelution with standards and comparing the RF values of standards to the bioautograms. Identity was confirmed with ATR-FTIR spectra of the isolated compounds from the bioactive zones. A significantly higher α-amylase and acetylcholinesterase inhibition of S. apiana leaf extract was associated with a higher flavonoid and diterpenoid content. Fermented S. officinalis extract exhibited a significantly higher ability to inhibit α-amylase compared to other non-fermented extracts from this species, due to increased extraction of flavonoids. The ATR-FTIR spectra of 2 zones with α-amylase inhibition, indicated that flavonoids and phenolic acids were responsible for α-amylase inhibition. Multiple zones of acetylcholinesterase inhibition were related to the presence of phenolic abietane diterpenoids and triterpenoid acids. The presence of abietane diterpenoids and triterpenoid acids was also found responsible for the mild antimicrobial activity. Flash chromatography was used to isolate sufficient amounts of bioactive compounds for further characterisation via NMR and MS spectroscopy. Five compounds were assigned to the zones where bioactivity was observed: cirsimaritin (zone 1), a caffeic acid polymer (zone 2), 16-hydroxyrosmanol (zone 3), 16-hydroxycarnosic acid (zone 4), oleanolic and ursolic acids (zone 5).
    Matched MeSH terms: Plant Extracts/chemistry
  5. Ahmad MA, Lim YH, Chan YS, Hsu CY, Wu TY, Sit NW
    Acta Pharm, 2022 Jun 01;72(2):317-328.
    PMID: 36651512 DOI: 10.2478/acph-2022-0013
    This study was conducted to evaluate the chemical composition and biological activities of the leaf extracts of Syzygium myrtifolium Walp. (Myrtaceae). The results indicate that the leaf extracts of S. myrtifolium contain various classes of phytochemicals (alkaloids, anthraquinones, flavonoids, phenolics, saponins, tannins and triterpenoids) and possess antioxidant, antibacterial, antifungal and antiviral activities. Ethyl acetate, ethanol, methanol, and water extracts exhibited significantly higher (p < 0.05) oxygen radical absorbance capacity and ferric-reducing antioxidant power than the hexane and chloroform extracts. However, all extracts exhibited stronger inhibitory activity against four tested species of yeasts (minimal inhibitory concentration: 0.02-0.31 mg mL-1) than against six tested species of bacteria (minimal inhibitory concentration: 0.16-1.25 mg mL-1). The ethanolic extract offered the highest protection of Vero cells (viability > 70 %) from the cytopathic effect caused by the Chikungunya virus while the ethyl acetate extract showed significant replication inhibitory activity against the virus (p < 0.001) using the replicon-enhanced green fluorescent protein reporter system.
    Matched MeSH terms: Plant Extracts/chemistry
  6. Sogan N, Kala S, Kapoor N, Nagpal BN, Ramlal A, Nautiyal A
    World J Microbiol Biotechnol, 2023 Apr 01;39(6):142.
    PMID: 37004584 DOI: 10.1007/s11274-023-03570-y
    Mosquitoes are infectious vectors for a wide range of pathogens and parasites thereby transmitting several diseases including malaria, dengue, Zika, Japanese encephalitis and chikungunya which pose a major public health concern. Mostly synthetic insecticides are usually applied as a primary control strategy to manage vector-borne diseases. However excessive and non-judicious usage of such chemically derived insecticides has led to serious environmental and health issues owing to their biomagnification ability and increased toxicity towards non-target organisms. In this context, many such bioactive compounds originating from entomopathogenic microbes serve as an alternative strategy and environmentally benign tool for vector control. In the present paper, the entomopathogenic fungus, Lecanicillium lecanii (LL) was processed to make the granules. Developed 4% LL granules have been characterized using the technique of Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The developed formulation was also subjected to an accelerated temperature study at 40 °C and was found to be stable for 3 months. Further, GCMS of the L. lecanii was also performed to screen the potential biomolecules present. The developed formulation was found to be lethal against Anopheles culicifacies with an LC50 value of 11.836 µg/mL. The findings from SEM and histopathology also substantiated the mortality effects. Further, the SEM EDX (energy dispersive X-ray) studies revealed that the treated larvae have lower nitrogen content which is correlated to a lower level of chitin whereas the control ones has higher chitin content and healthy membranes. The developed LL granule formulation exhibited high toxicity against Anopheles mosquitoes. The granule formulations can be used as an effective biocontrol strategy against malaria-causing mosquitoes.
    Matched MeSH terms: Plant Extracts/chemistry
  7. Hipolith MM, Khor BK, Hirasawa Y, Murugaiyah V, Lee CY, Morita H, et al.
    Fitoterapia, 2023 Apr;166:105468.
    PMID: 36931528 DOI: 10.1016/j.fitote.2023.105468
    Benign prostate hyperplasia (BPH) is an enlargement of the prostate gland, because of hormonal changes in aging males which contribute significantly to excessive proliferation over apoptosis of prostatic cells. The anti-proliferative and induced apoptotic activities of Eurycoma longifolia quassinoids on cancer cell lines could be promising therapeutic targets on BPH. Hitherto, no report of the quassinoids against BPH problem was available. In this study, a systematic phytochemical fractionation of the root extract, TAF2 was performed, which led to the discovery of nine previously described C20 quassinoids (1-9). Two undescribed C20 (10 and 12) and one undescribed (11) C19 quassinoids were identified by detailed NMR and HR-ESI-MS data analysis. Their absolute configurations were assigned by ECD spectral analysis. The quassinoids (1-12) were tested for inhibitory activity against the proliferation of human BPH-1 and human skin Hs27 fibroblast cells cultured in vitro. 1, 2 and 3 at 10 μM significantly reduced BPH-1 cell viability and were cytotoxic to Hs27 fibroblast cells. 2 was selected for further study of anti-BPH activity against testosterone induced BPH rats. At 5 mg/kg, 2 reduced the rat prostatic weight and prostatic index, consistent with the decrease in papillary acini number and epithelial thickness of the prostate tissues. These quassinoids may be potential anti-BPH compounds that require further studies.
    Matched MeSH terms: Plant Extracts/chemistry
  8. Jobaer MA, Ashrafi S, Ahsan M, Hasan CM, Rashid MA, Islam SN, et al.
    Molecules, 2023 May 19;28(10).
    PMID: 37241926 DOI: 10.3390/molecules28104186
    Gynura procumbens (Lour.) Merr. (Family: Asteraceae) is a tropical Asian medicinal plant found in Thailand, China, Malaysia, Indonesia, and Vietnam. It has long been utilized to treat a variety of health concerns in numerous countries around the world, such as renal discomfort, constipation, diabetes mellitus, rheumatism, and hypertension. The chemical investigation resulted in the isolation and characterization of six compounds from the methanol (MeOH) extract of the leaves of Gynura procumbens, which were identified as phytol (1), lupeol (2), stigmasterol (3), friedelanol acetate (4), β-amyrin (5), and a mixture of stigmasterol and β-sitosterol (6). In-depth investigations of the high-resolution 1H NMR and 13C NMR spectroscopic data from the isolated compounds, along with comparisons to previously published data, were used to clarify their structures. Among these, the occurrence of Compounds 1 and 4 in this plant are reported for the first time. The crude methanolic extract (CME) and its different partitionates, i.e., petroleum ether (PESF), chloroform (CSF), ethyl acetate (EASF), and aqueous (AQSF) soluble fractions, were subjected to antioxidant, cytotoxic, thrombolytic, and anti-diabetic activities. In a DPPH free radical scavenging assay, EASF showed the maximum activity, with an IC50 value of 10.78 µg/mL. On the other hand, CSF displayed the highest cytotoxic effect with an LC50 value of 1.94 µg/mL compared to 0.464 µg/mL for vincristine sulphate. In a thrombolytic assay, the crude methanolic extract exhibited the highest activity (63.77%) compared to standard streptokinase (70.78%). During the assay for anti-diabetic activity, the PESF showed 70.37% of glucose-lowering activity, where standard glibenclamide showed 63.24% of glucose-reducing activity.
    Matched MeSH terms: Plant Extracts/chemistry
  9. Usmani Z, Sharma M, Tripathi M, Lukk T, Karpichev Y, Gathergood N, et al.
    Sci Total Environ, 2023 Jul 10;881:163002.
    PMID: 37003333 DOI: 10.1016/j.scitotenv.2023.163002
    The increasing emphasis on the development of green replacements to traditional organic solvents and ionic liquids (ILs) can be attributed to the rising concerns over human health and detrimental impacts of conventional solvents towards the environment. A new generation of solvents inspired by nature and extracted from plant bioresources has evolved over the last few years, and are referred to as natural deep eutectic solvents (NADES). NADES are mixtures of natural constituents like sugars, polyalcohols, sugar-based alcohols, amino acids and organic acids. Interest in NADES has exponentially grown over the last eight years, which is evident from an upsurge in the number of research projects undertaken. NADES are highly biocompatible as they can be biosynthesized and metabolized by nearly all living organisms. These solvents pose several noteworthy advantages, such as easy synthesis, tuneable physico-chemical properties, low toxicity, high biodegradability, solute sustainability and stabilization and low melting point. Research on the applicability of NADES in diverse areas is gaining momentum, which includes as - media for chemical and enzymatic reactions; extraction media for essential oils; anti-inflammatory and antimicrobial agent; extraction of bioactive composites; as chromatographic media; preservatives for labile compounds and in drug synthesis. This review gives a complete overview of the properties, biodegradability and toxicity of NADES which we propose can assist in further knowledge generation on their significance in biological systems and usage in green and sustainable chemistry. Information on applications of NADES in biomedical, therapeutic and pharma-biotechnology fields is also highlighted in the current article along with the recent progress and future perspectives in novel applications of NADES.
    Matched MeSH terms: Plant Extracts/chemistry
  10. Ahmad AA, Kasim KF, Gopinath SCB, Anbu P, Sofian-Seng NS
    Int J Biol Macromol, 2023 Dec 31;253(Pt 2):126795.
    PMID: 37689304 DOI: 10.1016/j.ijbiomac.2023.126795
    Dicranopteris linearis (DL) is a fern in the Gleicheniaceae family, locally known as resam by the Malay community. It has numerous pharmacological benefits, with antiulcer and gastroprotective properties. Peptic ulcer is a chronic and recurring disease that significantly impacts morbidity and mortality, affecting nearly 20 % of the world's population. Despite the effectiveness of peptic ulcer drugs, there is no perfect treatment for the ailment. Encapsulation is an advanced technique that can treat peptic ulcers by incorporating natural sources. This work aims to encapsulate DL extract using different types of cellulose particles by the solvent displacement technique for peptic ulcer medication. The extract was encapsulated using methyl cellulose (MC), ethyl cellulose (EC), and a blend of ethyl methyl cellulose through a dialysis cellulose membrane tube and freeze-dried to yield a suspension of the encapsulated DL extracts. The microencapsulated methyl cellulose chloroform extract (MCCH) has a considerably greater level of total phenolic (84.53 ± 6.44 mg GAE/g), total flavonoid (84.53 ± 0.54 mg GAE/g), and antioxidant activity (86.40 ± 0.63 %). MCCH has the highest percentage of antimicrobial activity against Escherichia coli (2.42 ± 107 × 0.70 CFU/mL), Bacillus subtilis (5.21 ± 107 × 0.90 CFU/mL), and Shigella flexneri (1.25 ± 107 × 0.66 CFU/mL), as well as the highest urease inhibitory activity (50.0 ± 0.21 %). The MCCH particle size was estimated to be 3.347 ± 0.078 μm in diameter. It has been proven that DL elements were successfully encapsulated in the methyl cellulose polymer in the presence of calcium (Ca). Fourier transform infrared (FTIR) analysis indicated significant results, where the peak belonging to the CO stretch of the carbonyl groups of methyl cellulose (MC) shifted from 1638.46 cm-1 in the spectrum of pure MC to 1639.10 cm-1 in the spectrum of the MCCH extract. The shift in the wavenumbers was due to the interactions between the phytochemicals in the chloroform extract and the MC matrix in the microcapsules. Dissolution studies in simulated gastric fluid (SGF) and model fitting of encapsulated chloroform extracts showed that MCCH has the highest EC50 of 6.73 ± 0.27 mg/mL with R2 = 0.971 fitted by the Korsmeyer-Peppas model, indicating diffusion as the mechanism of release.
    Matched MeSH terms: Plant Extracts/chemistry
  11. Ullah S, Anwar F, Fayyaz Ur Rehman M, Qadir R, Safwan Akram M
    Chem Biodivers, 2023 Jul;20(7):e202300107.
    PMID: 37172296 DOI: 10.1002/cbdv.202300107
    This article presents an optimized ultrasound-assisted ethanolic extraction (UAEE) and characterization of selected high-value components from Gemlik olive fruit (GOF) harvested from Potohar region of Pakistan. Response surface methodology (RSM), involving central composite design (CCD), was applied to optimize the extraction variables i. e., temperature (25-65 °C), extraction time (15-45 min) and aqueous ethanol concentration (60-90 %) for optimal recovery of bioactives extract, total phenolic contents (TPC) and DPPH free radical scavengers. Under the optimized set of conditions such as 43 °C temperature, 32 min extraction time and 80 % aqueous ethanol, the best extract yield (218.82 mg/g), TPC (19.87 mg GAE/g) and DPPH scavenging activity (63.04 %) were recorded. A quadratic polynomial model was found to be reasonably fitted to the observed results for extract yield (p<0.0001 and R2 =0.9941), TPC (p<0.0001 and R2 =0.9891), and DPPH radical scavenging activity (p<0.0001 and R2 =0.9692). Potent phenolic compounds were identified by GC/MS in GOF extract and considerable amount of essential fatty acids were also detected. The current findings support the use of UAEE as an effective green route for optimized recovery of high-value components from GOF and hence its applications can be extended to functional food and nutra-pharmaceutical developments.
    Matched MeSH terms: Plant Extracts/chemistry
  12. Veeramohan R, Zamani AI, Azizan KA, Goh HH, Aizat WM, Razak MFA, et al.
    PLoS One, 2023;18(3):e0283147.
    PMID: 36943850 DOI: 10.1371/journal.pone.0283147
    The fresh leaves of Mitragyna speciosa (Korth.) Havil. have been traditionally consumed for centuries in Southeast Asia for its healing properties. Although the alkaloids of M. speciosa have been studied since the 1920s, comparative and systematic studies of metabolite composition based on different leaf maturity levels are still lacking. This study assessed the secondary metabolite composition in two different leaf stages (young and mature) of M. speciosa, using an untargeted liquid chromatography-electrospray ionisation-time-of-flight-mass spectrometry (LC-ESI-TOF-MS) metabolite profiling. The results revealed 86 putatively annotated metabolite features (RT:m/z value) comprising 63 alkaloids, 10 flavonoids, 6 terpenoids, 3 phenylpropanoids, and 1 of each carboxylic acid, glucoside, phenol, and phenolic aldehyde. The alkaloid features were further categorised into 14 subclasses, i.e., the most abundant class of secondary metabolites identified. As per previous reports, indole alkaloids are the most abundant alkaloid subclass in M. speciosa. The result of multivariate analysis (MVA) using principal component analysis (PCA) showed a clear separation of 92.8% between the young and mature leaf samples, indicating a high variance in metabolite levels between them. Akuammidine, alstonine, tryptamine, and yohimbine were tentatively identified among the many new alkaloids reported in this study, depicting the diverse biological activities of M. speciosa. Besides delving into the knowledge of metabolite distribution in different leaf stages, these findings have extended the current alkaloid repository of M. speciosa for a better understanding of its pharmaceutical potential.
    Matched MeSH terms: Plant Extracts/chemistry
  13. Jamal HAA, Husaini A, Sing NN, Roslan HA, Zulkharnain A, Akinkunmi WA
    Braz J Microbiol, 2022 Dec;53(4):1857-1870.
    PMID: 36109458 DOI: 10.1007/s42770-022-00827-w
    This research evaluates the bioactivity of twelve endophytic fungi successfully isolated and characterised from Gynura procumbens. The fungal extracts displayed inhibitory activity against Staphylococcus aureus, Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Salmonella typhi with the MIC and MBC of 5000 µg/mL. High antioxidant activity using DPPH free radical scavenging assay with inhibition of 86.6% and IC50 value of 104.25 ± 18.51 µg/mL were exhibited by ethyl acetate extract of Macrophomina phaseolina SN6. In contrast, the highest scavenging activity percentage of methanolic extract was exhibited by Mycoleptodiscus indicus SN4 (50.0%). Besides that, the highest ferric reducing antioxidant power (FRAP) value of ethyl acetate and methanolic extract was recorded from M. phaseolina SN6 (239.9 mg Fe (II)/g) and M. indicus SN4 (44.7 mg Fe (II)/g), respectively. Total phenolic content (TPC) and total flavonoid content (TFC) of ethyl acetate and methanolic fungal extracts were determined using Folin-Ciocalteu and aluminium chloride, respectively. The highest TPC for ethyl acetate and methanolic extracts were exhibited by Colletotrichum gloeosporioides SN11 (87.0 mg GAE/g) and M. indicus SN4 (35.0 mg GAE/g), whereas the highest TFC of ethyl acetate and methanolic extracts were showed by M. phaseolina SN6 (122.8 mg QCE/g) and M. indicus SN4 (60.4 mg QCE/g), respectively. Bioactive metabolites of isoelemicin (50.8%), terpinen-4-ol (21.5%), eucalyptol (24.3%), oleic acid (19.8%) and β-pinene (10.9%) were detected. Owing to the higher content of phytochemicals represented in the ethyl acetate extract of M. phaseolina, SN6 is therefore identified to be a superior candidate in exhibiting strong antioxidant and antimicrobial properties be fit for further pharmaceutical studies.
    Matched MeSH terms: Plant Extracts/chemistry
  14. Tan KS, Azman AS, Hassandarvish P, Amelia-Yap ZH, Tan TK, Low VL
    Int J Mol Sci, 2023 Aug 03;24(15).
    PMID: 37569772 DOI: 10.3390/ijms241512398
    The insecticidal activity of Streptomyces sp. KSF103 ethyl acetate (EA) extract against mosquitoes is known; however, the underlying mechanism behind this activity remains elusive. In this study, liquid chromatography with tandem mass spectrometry (LC-MS/MS) was employed to investigate changes in the protein profile of Aedes aegypti larvae and adults treated with lethal concentrations of 50 (LC50) EA extract. By comparing the treated and untreated mosquitoes, this study aimed to identify proteins or pathways that exhibit alterations, potentially serving as targets for future insecticide development. Treatment with a lethal concentration of EA extract upregulated 15 proteins in larvae, while in adults, 16 proteins were upregulated, and two proteins were downregulated. These proteins were associated with metabolism, protein regulation/degradation, energy production, cellular organization and structure, enzyme activity, and catalysis, as well as calcium ion transport and homeostasis. Notably, ATP synthase, fructose-bisphosphate aldolase (FBA), and ATP citrate synthase were significantly expressed in both groups. Gene ontology analysis indicated a focus on energy metabolic processes. Molecular docking revealed a strong interaction between dodemorph, selagine (compounds from the EA extract), and FBA, suggesting FBA as a potential protein target for insecticide development. Further studies such as Western blot and transcriptomic analyses are warranted to validate the findings.
    Matched MeSH terms: Plant Extracts/chemistry
  15. Ali Reza ASM, Nasrin MS, Hossen MA, Rahman MA, Jantan I, Haque MA, et al.
    Crit Rev Food Sci Nutr, 2023;63(22):5546-5576.
    PMID: 34955042 DOI: 10.1080/10408398.2021.2021138
    Medicinally important plant-foods offer a balanced immune function, which is essential for protecting the body against antigenic invasion, mainly by microorganisms. Immunomodulators play pivotal roles in supporting immune function either suppressing or stimulating the immune system's response to invading pathogens. Among different immunomodulators, plant-based secondary metabolites have emerged as high potential not only for immune defense but also for cellular immunoresponsiveness. These natural immunomodulators can be developed into safer alternatives to the clinically used immunosuppressants and immunostimulant cytotoxic drugs which possess serious side effects. Many plants of different species have been reported to possess strong immunomodulating properties. The immunomodulatory effects of plant extracts and their bioactive metabolites have been suggested due to their diverse mechanisms of modulation of the complex immune system and their multifarious molecular targets. Phytochemicals such as alkaloids, flavonoids, terpenoids, carbohydrates and polyphenols have been reported as responsible for the immunomodulatory effects of several medicinal plants. This review illustrates the potent immunomodulatory effects of 65 plant secondary metabolites, including dietary compounds and their underlying mechanisms of action on cellular and humoral immune functions in in vitro and in vivo studies. The clinical potential of some of the compounds to be used for various immune-related disorders is highlighted.
    Matched MeSH terms: Plant Extracts/chemistry
  16. Suriyakala G, Sathiyaraj S, Balasundaram M, Murugan K, Babujanarthanam R, Gandhi AD
    Bioprocess Biosyst Eng, 2023 Oct;46(10):1483-1498.
    PMID: 37552312 DOI: 10.1007/s00449-023-02915-z
    In the current scenario, many synthetic chemicals have used long-term to control pests and mosquitoes, leading to the resistance of strains and toxicity effect on human beings. To overcome the adverse problem in recent advances, the scientific community is looking into nanofabricated pesticides and mosquitoes. This study aims to synthesize the recyclable chitosan-coated cadmium nanoparticles (Ch-CdNps) using Plumeria alba flower extract, which was further applied for insecticidal and mosquitocidal activities. The synthesized Ch-CdNps were confirmed by UV spectroscopy and FTIR analysis. The XRD, TEM, and DLS results confirmed the crystallinity with a spherical shape at 80-100 nm. The insecticidal activity proves that Ch-CdNps inhibited Helicoverpa armigera and Spodoptera litura at 100 ppm. In mosquitocidal, LC50 values of larvicidal of 1st instar were 4.116, 4.33, and 4.564 µg/mL, and the remaining three stages of instars, pupicidal, adulticidal, longevity, fecundity, and ovicidal assays inhibit the Anopheles stephensi followed by Aedes aegypti and Culex quinquefasciatus. Further, the first-order kinetics of photocatalytic degradation of methylene blue and methyl orange was confirmed. Based on the obtained results, Ch-CdNps can inhibit the pest, mosquitoes, and photocatalytic degradation.
    Matched MeSH terms: Plant Extracts/chemistry
  17. Raja Mazlan RNA, Rukayadi Y, Maulidiani M, Ismail IS
    Molecules, 2018 Jul 16;23(7).
    PMID: 30012946 DOI: 10.3390/molecules23071730
    The aim of this study was to determine the effects of different solvents for extraction, liquid⁻liquid partition, and concentrations of extracts and fractions of Piper cubeba L. on anticariogenic; antibacterial and anti-inflammatory activity against oral bacteria. Furthermore, ¹H-Nuclear Magnetic Resonance (NMR) coupled with multivariate data analysis (MVDA) was applied to discriminate between the extracts and fractions and examine the metabolites that correlate to the bioactivities. All tested bacteria were susceptible to Piper cubeba L. extracts and fractions. Different solvents extraction, liquid⁻liquid partition and concentrations of extracts and fractions have partially influenced the antibacterial activity. MTT assay showed that P. cubeba L. extracts and fractions were not toxic to RAW 264.7 cells at selected concentrations. Anti-inflammatory activity evaluated by nitric oxide (NO) production in lipopolysaccharide (LPS) stimulated cells showed a reduction in NO production in cells treated with P. cubeba L. extracts and fractions, compared to those without treatment. Twelve putative metabolites have been identified, which are (1) cubebin, (2) yatein, (3) hinokinin, (4) dihydrocubebin, (5) dihydroclusin, (6) cubebinin, (7) magnosalin, (8) p-cymene, (9) piperidine, (10) cubebol, (11) d-germacrene and (12) ledol. Different extraction and liquid⁻liquid partition solvents caused separation in principal component analysis (PCA) models. The partial least squares (PLS) models showed that higher anticariogenic activity was related more to the polar solvents, despite some of the active metabolites also present in the non-polar solvents. Hence, P. cubeba L. extracts and fractions exhibited antibacterial and anti-inflammatory activity and have potential to be developed as the anticariogenic agent.
    Matched MeSH terms: Plant Extracts/chemistry*
  18. Mohamad Hanafiah R, Abd Ghafar SA, Lim V, Musa SNA, Yakop F, Hairil Anuar AH
    Artif Cells Nanomed Biotechnol, 2023 Dec;51(1):549-559.
    PMID: 37847252 DOI: 10.1080/21691401.2023.2268167
    This study aims to characterize and determine the antibacterial activities of synthesized Strobilanthes crispus-mediated AgNPs (SC-AgNPs) against Streptococcus mutans, Escherichia coli and Pseudomonas aeruginosa. S. crispus water extract acts as a reducing and capping agent in the synthesis of AgNPs. The synthesized AgNPs were characterized by using UV-Vis spectrophotometer, dynamic light scattering (DLS), field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR). FESEM images showed a rough surface with a spherical shape. The average size distribution of 75.25 nm with a polydispersity index (PDI) of 0.373. XRD analysis matched the face-centred cubic structure of silver. FTIR analysis revealed a shifted peak from 1404.99 to 1345.00 cm-1. MIC and MBC values of SC-AgNPs were 1.25 mg/mL and 2.5 mg/mL against E. coli, P. aeruginosa and S. mutans, respectively. Time-kill assay showed that SC-AgNPs significantly reduced bacterial growth as compared to non-treated bacteria. Morphologies of bacteria treated with SC-AgNPs were shrunk, lysed, irregular and smaller as compared to control. SC-AgNPs significantly disrupted the gene expression of eae A, gtf B and Pel A (p 
    Matched MeSH terms: Plant Extracts/chemistry
  19. Tan YY, Wong LS, Nyam KL, Wittayanarakul K, Zawawi NA, Rajendran K, et al.
    Molecules, 2023 Sep 22;28(19).
    PMID: 37836592 DOI: 10.3390/molecules28196749
    Zinc oxide nanoparticles have high levels of biocompatibility, a low impact on environmental contamination, and suitable to be used as an ingredient for environmentally friendly skincare products. In this study, biogenically synthesized zinc oxide nanoparticles using Dendrobium anosum are used as a reducing and capping agent for topical anti-acne nanogels, and the antimicrobial effect of the nanogel is assessed on Cutibacterium acne and Staphylococcus aureus. Dendrobium anosmum leaf extract was examined for the presence of secondary metabolites and its total amount of phenolic and flavonoid content was determined. Both the biogenically and chemogenic-synthesized zinc oxide nanoparticles were compared using UV-Visible spectrophotometer, FE-SEM, XRD, and FTIR. To produce the topical nanogel, the biogenic and chemogenic zinc oxide nanoparticles were mixed with a carbomer and hydroxypropyl-methyl cellulose (HPMC) polymer. The mixtures were then tested for physical and chemical characteristics. To assess their anti-acne effectiveness, the mixtures were tested against C. acne and S. aureus. The biogenic zinc oxide nanoparticles have particle sizes of 20 nm and a high-phase purity. In comparison to chemogenic nanoparticles, the hydrogels with biogenically synthesized nanoparticles was more effective against Gram-positive bacteria. Through this study, the hybrid nanogels was proven to be effective against the microbes that cause acne and to be potentially used as a green product against skin infections.
    Matched MeSH terms: Plant Extracts/chemistry
  20. Yudthavorasit S, Wongravee K, Leepipatpiboon N
    Food Chem, 2014 Sep 01;158:101-11.
    PMID: 24731320 DOI: 10.1016/j.foodchem.2014.02.086
    Chromatographic fingerprints of gingers from five different ginger-producing countries (China, India, Malaysia, Thailand and Vietnam) were newly established to discriminate the origin of ginger. The pungent bioactive principles of ginger, gingerols and six other gingerol-related compounds were determined and identified. Their variations in HPLC profiles create the characteristic pattern of each origin by employing similarity analysis, hierarchical cluster analysis (HCA), principal component analysis (PCA) and linear discriminant analysis (LDA). As results, the ginger profiles tended to be grouped and separated on the basis of the geographical closeness of the countries of origin. An effective mathematical model with high predictive ability was obtained and chemical markers for each origin were also identified as the characteristic active compounds to differentiate the ginger origin. The proposed method is useful for quality control of ginger in case of origin labelling and to assess food authenticity issues.
    Matched MeSH terms: Plant Extracts/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links