Displaying publications 81 - 100 of 123 in total

Abstract:
Sort:
  1. Kahar UM, Ng CL, Chan KG, Goh KM
    Appl Microbiol Biotechnol, 2016 Jul;100(14):6291-307.
    PMID: 27000839 DOI: 10.1007/s00253-016-7451-6
    Type I pullulanases are enzymes that specifically hydrolyse α-1,6 linkages in polysaccharides. This study reports the analyses of a novel type I pullulanase (PulASK) from Anoxybacillus sp. SK3-4. Purified PulASK (molecular mass of 80 kDa) was stable at pH 5.0-6.0 and was most active at pH 6.0. The optimum temperature for PulASK was 60 °C, and the enzyme was reasonably stable at this temperature. Pullulan was the preferred substrate for PulASK, with 89.90 % adsorbance efficiency (various other starches, 56.26-72.93 % efficiency). Similar to other type I pullulanases, maltotriose was formed on digestion of pullulan by PulASK. PulASK also reacted with β-limit dextrin, a sugar rich in short branches, and formed maltotriose, maltotetraose and maltopentaose. Nevertheless, PulASK was found to preferably debranch long branches at α-1,6 glycosidic bonds of starch, producing amylose, linear or branched oligosaccharides, but was nonreactive against short branches; thus, no reducing sugars were detected. This is surprising as all currently known type I pullulanases produce reducing sugars (predominantly maltotriose) on digesting starch. The closest homologue of PulASK (95 % identity) is a type I pullulanase from Anoxybacillus sp. LM14-2 (Pul-LM14-2), which is capable of forming reducing sugars from starch. With rational design, amino acids 362-370 of PulASK were replaced with the corresponding sequence of Pul-LM14-2. The mutant enzyme formed reducing sugars on digesting starch. Thus, we identified a novel motif involved in substrate specificity in type I pullulanases. Our characterization may pave the way for the industrial application of this unique enzyme.
    Matched MeSH terms: Recombinant Proteins/metabolism
  2. Liew KJ, Ngooi CY, Shamsir MS, Sani RK, Chong CS, Goh KM
    Protein Expr. Purif., 2019 12;164:105464.
    PMID: 31376486 DOI: 10.1016/j.pep.2019.105464
    Xylanases (EC 3.2.1.8) are essential enzymes due to their applications in various industries such as textile, animal feed, paper and pulp, and biofuel industries. Halo-thermophilic Rhodothermaceae bacterium RA was previously isolated from a hot spring in Malaysia. Genomic analysis revealed that this bacterium is likely to be a new genus of the family Rhodothermaceae. In this study, a xylanase gene (1140 bp) that encoded 379 amino acids from the bacterium was cloned and expressed in Escherichia coli BL21(DE3). Based on InterProScan, this enzyme XynRA1 contained a GH10 domain and a signal peptide sequence. XynRA1 shared low similarity with the currently known xylanases (the closest is 57.2-65.4% to Gemmatimonadetes spp.). The purified XynRA1 achieved maximum activity at pH 8 and 60 °C. The protein molecular weight was 43.1 kDa XynRA1 exhibited an activity half-life (t1/2) of 1 h at 60 °C and remained stable at 50 °C throughout the experiment. However, it was NaCl intolerant, and various types of salt reduced the activity. This enzyme effectively hydrolyzed xylan (beechwood, oat spelt, and Palmaria palmata) and xylodextrin (xylotriose, xylotetraose, xylopentaose, and xylohexaose) to produce predominantly xylobiose. This xylanase is the first functionally characterized enzyme from the bacterium, and this work broadens the knowledge of GH10 xylanases.
    Matched MeSH terms: Recombinant Proteins/metabolism
  3. Karim KMR, Husaini A, Sing NN, Tasnim T, Mohd Sinang F, Hussain H, et al.
    Protein Expr. Purif., 2019 12;164:105462.
    PMID: 31351992 DOI: 10.1016/j.pep.2019.105462
    The Aspergillus flavus NSH9 gene, encoding a pH and thermostable glucoamylase with a starch binding domain (SBD), was expressed in Pichia pastoris to produce recombinant glucoamylase (rGA2). The full-length glucoamylase gene (2039 bp), and cDNA (1839 bp) encode a 612 amino acid protein most similar to glucoamylase from Aspergillus oryzae RIB40; the first 19 amino acids are presumed to be a signal peptide for secretion, and the SBD is at the C-terminal. The cDNA was successfully secreted by Pichia at 8.23 U mL-1, and the rGA2 was found to be: a 80 kDa monomer, stable from pH 3.0-9.0, with optimum catalytic activity at pH 5.0, active at temperatures up to 80°C (rGA2 retained 58% of its activity after 60 min of incubation at 70°C), and metal ions such as Na+, K+, Ca++ and Mg++ enhanced rGA2 enzyme activity. The starch degrading ability of rGA2 was also observed on raw sago starch and where prolonged incubation generated larger, deeper, holes on the starch granules, indicating rGA2 is an excellent candidate for industrial starch processing applications.
    Matched MeSH terms: Recombinant Proteins/metabolism
  4. Ong RM, Goh KM, Mahadi NM, Hassan O, Rahman RN, Illias RM
    J Ind Microbiol Biotechnol, 2008 Dec;35(12):1705-14.
    PMID: 18726621 DOI: 10.1007/s10295-008-0462-2
    The cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) gene from Bacillus sp. G1 was successfully isolated and cloned into Escherichia coli. Analysis of the nucleotide sequence revealed the presence of an open reading frame of 2,109 bp and encoded a 674 amino acid protein. Purified CGTase exhibited a molecular weight of 75 kDa and had optimum activity at pH 6 and 60 degrees C. Heterologous recombinant protein expression in E. coli is commonly problematic causing intracellular localization and formation of inactive inclusion bodies. This paper shows that the majority of CGTase was secreted into the medium due to the signal peptide of Bacillus sp. G1 that also works well in E. coli, leading to easier purification steps. When reacted with starch, CGTase G1 produced 90% beta-cyclodextrin (CD) and 10% gamma-CD. This enzyme also preferred the economical tapioca starch as a substrate, based on kinetics studies. Therefore, CGTase G1 could potentially serve as an industrial enzyme for the production of beta-CD.
    Matched MeSH terms: Recombinant Proteins/metabolism*
  5. Li L, Tan CM, Koo SH, Chong KT, Lee EJ
    Pharmacogenet Genomics, 2007 Sep;17(9):783-6.
    PMID: 17700367
    The human concentrative nucleoside transporter (hCNT2), also known as SLC28A2, plays an important role in the cellular uptake across intestinal membrane of some naturally occurring nucleosides and nucleoside analogs. This study aims to determine the genetic variability of hCNT2 (SLC28A2) in three major Asian ethnic groups residing in Singapore: Chinese, Malay and Indian, and functionally characterize the variants of hCNT2. Healthy participants (n=96) from each group were screened for genetic variations in the exons of hCNT2 (SLC28A2) using denaturing high performance liquid chromatography and sequencing analyses. A total of 23 polymorphisms were identified in the exonic and flanking intronic regions, and ethnic differences in single nucleotide polymorphism frequencies were evident. Five novel nonsynonymous variants (L12R, R142H, E172D, E385K, M612T) were constructed by mutagenesis and functionally characterized in U-251 cells. Expression of these variants in U-251 cells revealed that all except E385K can uptake various substrates of hCNT2: inosine, ribavirin and uridine.
    Matched MeSH terms: Recombinant Proteins/metabolism
  6. Seman WM, Bakar SA, Bukhari NA, Gaspar SM, Othman R, Nathan S, et al.
    J Biotechnol, 2014 Aug 20;184:219-28.
    PMID: 24910973 DOI: 10.1016/j.jbiotec.2014.05.034
    A Pichia pastoris transformant carrying the cutinase cDNA of Glomerella cingulata was over-expressed in a 5L bioreactor (2.0L working volume) under fed-batch conditions. Bioreactor experiments rely on varying selected parameters in repeated rounds of optimisation: here these included duration of induction, pH and temperature. Highest cell densities (320gL(-1) wet cell weight) with a cutinase production of 3800mgL(-1) and an activity of 434UmL(-1) were achieved 24h after induction with methanol in basal salt medium (at pH 5 and 28°C). Characterisation of the cutinase showed that it was stable between pH 6 and pH 11, had an optimum pH of 8.0 and retained activity for 30min at 50°C (optimum temperature 25°C).The preferred substrates of G. cingulata cutinase were the medium- to long-chain ρ-nitrophenyl esters of ρ-nitrophenylcaprylate (C8), ρ-nitrophenyllaurate (C12) and ρ-nitrophenylmyristate (C14), with the highest catalytic efficiency, kcat/Km of 7.7±0.7mM(-1)s(-1) for ρ-nitrophenylcaprylate. Microscopic analyses showed that the G. cingulata cutinase was also capable of depolymerising the high molecular weight synthetic polyester, polyethylene terephthalate.
    Matched MeSH terms: Recombinant Proteins/metabolism
  7. Masomian M, Jasni AS, Rahman RNZRA, Salleh AB, Basri M
    J Biotechnol, 2017 Dec 20;264:51-62.
    PMID: 29107669 DOI: 10.1016/j.jbiotec.2017.10.014
    A total of 97 amino acids, considered as the signal peptide and transmembrane segments were removed from 205y lipase gene using polymerase chain reaction technique that abolished the low activity of this enzyme. The mature enzyme was expressed in Escherichia coli using pBAD expression vector, which gave up to a 13-fold increase in lipase activity. The mature 205y lipase (without signal peptide and transmembrane; -SP/TM) was purified to homogeneity using the isoelectric focusing technique with 53% recovery. Removing of the signal peptide and transmembrane segments had resulted in the shift of optimal pH, an increase in optimal temperature and tolerance towards more water-miscible organic solvents as compared to the characteristics of open reading frame (ORF) of 205y lipase. Also, in the presence of 1mM inhibitors, less decrease in the activity of mature 205y lipase was observed compared to the ORF of the enzyme. Protein structure modeling showed that 205y lipase consisted of an α/β hydrolase fold without lid domain. However, the transmembrane segment could effect on the enzyme activity by covering the active site or aggregation the protein.
    Matched MeSH terms: Recombinant Proteins/metabolism
  8. Tee YN, Kumar PV, Maki MAA, Elumalai M, Rahman SAKMEH, Cheah SC
    Curr Pharm Biotechnol, 2021;22(7):969-982.
    PMID: 33342408 DOI: 10.2174/1389201021666201218124450
    BACKGROUND: Recombinant Keratinocyte Growth Factor (rHuKGF) is a therapeutic protein used widely in oral mucositis after chemotherapy in various cancers, stimulating lung morphogenesis and gastrointestinal tract cell proliferation. In this research study, chitosan-rHuKGF polymeric complex was implemented to improve the stability of rHuKGF and used as rejuvenation therapy for the treatment of oral mucositis in cancer patients.

    OBJECTIVE: Complexation of rHuKGF with mucoadhesive low molecular weight chitosan to protect rHuKGF from proteolysis and investigate the effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells.

    METHODS: The interaction between chitosan and rHuKGF was studied by molecular docking. Malvern ZetaSizer Nano Zs and Fourier-Transform Infrared spectroscopy (FTIR) tests were carried out to characterize the chitosan-rHuKGF complex. In addition, SDS-PAGE was performed to investigate the interaction between chitosan-rHuKGF complex and pepsin. The effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells was studied by MTT assay.

    RESULTS: Chitosan-rHuKGF complex was formed through the hydrogen bonding proven by the docking studies. A stable chitosan-rHuKGF complex was formed at pH 4.5 and was protected from proteolysis and assessed by SDS PAGE. According to the MTT assay results, chitosan-rHuKGF complex increased the cell proliferation rate of FHs 74 Int cells.

    CONCLUSION: The developed complex improved the stability and the biological function of rHuKGF.

    Matched MeSH terms: Recombinant Proteins/metabolism
  9. Ejike UC, Chan CJ, Okechukwu PN, Lim RLH
    Crit Rev Biotechnol, 2020 Dec;40(8):1172-1190.
    PMID: 32854547 DOI: 10.1080/07388551.2020.1808581
    Fungal immunomodulatory proteins (FIPs) are fascinating small and heat-stable bioactive proteins in a distinct protein family due to similarities in their structures and sequences. They are found in fungi, including the fruiting bodies producing fungi comprised of culinary and medicinal mushrooms. Structurally, most FIPs exist as homodimers; each subunit consisting of an N-terminal α-helix dimerization and a C-terminal fibronectin III domain. Increasing numbers of identified FIPs from either different or same fungal species clearly indicates the growing research interests into its medicinal properties which include immunomodulatory, anti-inflammation, anti-allergy, and anticancer. Most FIPs increased IFN-γ production in peripheral blood mononuclear cells, potentially exerting immunomodulatory and anti-inflammatory effects by inhibiting overproduction of T helper-2 (Th2) cytokines common in an allergy reaction. Recently, FIP from Ganoderma microsporum (FIP-gmi) was shown to promote neurite outgrowth for potential therapeutic applications in neuro-disorders. This review discussed FIPs' structural and protein characteristics, their recombinant protein production for functional studies, and the recent advances in their development and applications as pharmaceutics and functional foods.
    Matched MeSH terms: Recombinant Proteins/metabolism
  10. Armugam A, Earnest L, Chung MC, Gopalakrishnakone P, Tan CH, Tan NH, et al.
    Toxicon, 1997 Jan;35(1):27-37.
    PMID: 9028006
    cDNAs encoding three phospholipase A2 (PLA2) isoforms in Naja naja sputatrix were cloned and characterized. One of them encoded an acidic PLA2 (APLA) while the others encoded neutral PLA2 (NPLA-1 and NPLA-2). The specific characteristics of APLA and NPLA were attributed to mutations at nt139 and nt328 from G to C and G to A, respectively, resulting in amino acid substitutions from Asp20 and 83 in APLA to His20 and Asn83 in NPLA. Amino acid sequencing of purified protein also showed the presence of this Asp20 and His20 in APLA and NPLA, respectively. The cDNA encoding one of the PLA2 (NAJPLA-2A), when expressed in Escherichia coli, yielded a protein that exhibited PLA2 activity.
    Matched MeSH terms: Recombinant Proteins/metabolism
  11. Karim KM, Husaini A, Hossain MA, Sing NN, Mohd Sinang F, Hussain MH, et al.
    Biomed Res Int, 2016;2016:5962028.
    PMID: 27504454 DOI: 10.1155/2016/5962028
    A novel thermostable glucoamylase cDNA without starch binding domain (SBD) of Aspergillus flavus NSH9 was successfully identified, isolated, and overexpressed in Pichia pastoris GS115. The complete open reading frame of glucoamylase from Aspergillus flavus NSH9 was identified by employing PCR that encodes 493 amino acids lacking in the SBD. The first 17 amino acids were presumed to be a signal peptide. The cDNA was cloned into Pichia pastoris and the highest expression of recombinant glucoamylase (rGA) was observed after 8 days of incubation period with 1% methanol. The molecular weight of the purified rGA was about 78 kDa and exhibited optimum catalytic activity at pH 5.0 and temperature of 70°C. The enzyme was stable at higher temperature with 50% of residual activity observed after 20 min at 90°C and 100°C. Low concentration of metal (Mg(++), Fe(++), Zn(++), Cu(++), and Pb(++)) had positive effect on rGA activity. This rGA has the potential for use and application in the saccharification steps, due to its thermostability, in the starch processing industries.
    Matched MeSH terms: Recombinant Proteins/metabolism
  12. Tam YJ, Zeenathul NA, Rezaei MA, Mustafa NH, Azmi MLM, Bahaman AR, et al.
    Biotechnol Appl Biochem, 2017 Sep;64(5):735-744.
    PMID: 27506960 DOI: 10.1002/bab.1528
    Limit of detection (LOD), limit of quantification, and the dynamic range of detection of hepatitis B surface antigen antibody (anti-HBs) using a surface plasmon resonance (SPR) chip-based approach with Pichia pastoris-derived recombinant hepatitis B surface antigen (HBsAg) as recognition element were established through the scouting for optimal conditions for the improvement of immobilization efficiency and in the use of optimal regeneration buffer. Recombinant HBsAg was immobilized onto the sensor surface of a CM5 chip at a concentration of 150 mg/L in sodium acetate buffer at pH 4 with added 0.6% Triton X-100. A regeneration solution of 20 mM HCl was optimally found to effectively unbind analytes from the ligand, thus allowing for multiple screening cycles. A dynamic range of detection of ∼0.00098-0.25 mg/L was obtained, and a sevenfold higher LOD, as well as a twofold increase in coefficient of variance of the replicated results, was shown as compared with enzyme-linked immunosorbent assay (ELISA). Evaluation of the assay for specificity showed no cross-reactivity with other antibodies tested. The ability of SPR chip-based assay and ELISA to detect anti-HBs in human serum was comparable, indicating that the SPR chip-based assay with its multiple screening capacity has greater advantage over ELISA.
    Matched MeSH terms: Recombinant Proteins/metabolism
  13. Kueh CL, Yong CY, Masoomi Dezfooli S, Bhassu S, Tan SG, Tan WS
    Biotechnol Prog, 2017 Mar;33(2):549-557.
    PMID: 27860432 DOI: 10.1002/btpr.2409
    Macrobrachium rosenbergii nodavirus (MrNV) is a virus native to giant freshwater prawn. Recombinant MrNV capsid protein has been produced in Escherichia coli, which self-assembled into virus-like particles (VLPs). However, this recombinant protein is unstable, degrading and forming heterogenous VLPs. In this study, MrNV capsid protein was produced in insect Spodoptera frugiperda (Sf9) cells through a baculovirus system. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the recombinant protein produced by the insect cells self-assembled into highly stable, homogenous VLPs each of approximately 40 nm in diameter. Enzyme-linked immunosorbent assay (ELISA) showed that the VLPs produced in Sf9 cells were highly antigenic and comparable to those produced in E. coli. In addition, the Sf9 produced VLPs were highly stable across a wide pH range (2-12). Interestingly, the Sf9 produced VLPs contained DNA of approximately 48 kilo base pairs and RNA molecules. This study is the first report on the production and characterization of MrNV VLPs produced in a eukaryotic system. The MrNV VLPs produced in Sf9 cells were about 10 nm bigger and had a uniform morphology compared with the VLPs produced in E. coli. The insect cell production system provides a good source of MrNV VLPs for structural and immunological studies as well as for host-pathogen interaction studies. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:549-557, 2017.
    Matched MeSH terms: Recombinant Proteins/metabolism
  14. Javid MT, Rahim F, Taha M, Nawaz M, Wadood A, Ali M, et al.
    Bioorg Chem, 2018 09;79:323-333.
    PMID: 29803079 DOI: 10.1016/j.bioorg.2018.05.011
    Thymidine phosphorylase is an enzyme involved in pyrimidine salvage pathway that is identical to platelet-derived endothelial cell growth factor (PD-ECGF) and gliostatin. It is enormously up regulated in a variety of solid tumors. Furthermore, surpassing of TP level protects tumor cells from apoptosis and helps cell survival. Thus TP is identified as a prime target for developing novel anticancer therapies. A new class of exceptionally potent isatin based oxadiazole (1-30) has been synthesized and evaluated for thymidine phosphorylase inhibitory potential. All analogs showed potent thymidine phosphorylase inhibition when compared with standard 7-Deazaxanthine, 7DX (IC50 = 38.68 ± 1.12 µM). Molecular docking study was performed in order to determine the binding interaction of these newly synthesized compounds, which revealed that these synthesized compounds established stronger hydrogen bonding network with active site of residues as compare to the standard compound 7DX.
    Matched MeSH terms: Recombinant Proteins/metabolism
  15. Mohd-Sharif N, Shaibullah S, Givajothi V, Tan CS, Ho KL, Teh AH, et al.
    Acta Crystallogr F Struct Biol Commun, 2017 02 01;73(Pt 2):109-115.
    PMID: 28177322 DOI: 10.1107/S2053230X17001212
    TylP is one of five regulatory proteins involved in the regulation of antibiotic (tylosin) production, morphological and physiological differentiation in Streptomyces fradiae. Its function is similar to those of various γ-butyrolactone receptor proteins. In this report, N-terminally His-tagged recombinant TylP protein (rTylP) was overproduced in Escherichia coli and purified to homogeneity. The rTylP protein was crystallized from a reservoir solution comprising 34%(v/v) ethylene glycol and 5%(v/v) glycerol. The protein crystals diffracted X-rays to 3.05 Å resolution and belonged to the trigonal space group P3121, with unit-cell parameters a = b = 126.62, c = 95.63 Å.
    Matched MeSH terms: Recombinant Proteins/metabolism
  16. Abd-Aziz N, Tan BC, Rejab NA, Othman RY, Khalid N
    Mol Biotechnol, 2020 Apr;62(4):240-251.
    PMID: 32108286 DOI: 10.1007/s12033-020-00242-2
    In the past decade, interest in the production of recombinant pharmaceutical proteins in plants has tremendously progressed because plants do not harbor mammalian viruses, are economically competitive, easily scalable, and capable of carrying out complex post-translational modifications required for recombinant pharmaceutical proteins. Mucuna bracteata is an essential perennial cover crop species widely planted as an underground cover in oil palm and rubber plantations. As a legume, they have high biomass, thrive in its habitat, and can fix nitrogen. Thus, M. bracteata is a cost-efficient crop that shows ideal characteristics as a platform for mass production of recombinant protein. In this study, we established a new platform for the transient production of a recombinant protein in M. bracteata via vacuum-assisted agro-infiltration. Five-week-old M. bracteata plants were vacuum infiltrated with Agrobacterium tumefaciens harboring a plasmid that encodes for an anti-toxoplasma immunoglobulin (IgG) under different parameters, including trifoliate leaf positional effects, days to harvest post-infiltration, and the Agrobacterium strain used. Our results showed that vacuum infiltration of M. bracteata plant with A. tumefaciens strain GV3101 produced the highest concentration of heterologous protein in its bottom trifoliate leaf at 2 days post-infiltration. The purified anti-toxoplasma IgG was then analyzed using Western blot and ELISA. It was demonstrated that, while structural heterogeneity existed in the purified anti-toxoplasma IgG from M. bracteata, its transient expression level was two-fold higher than the model platform, Nicotiana benthamiana. This study has laid the foundation towards establishing M. bracteata as a potential platform for the production of recombinant pharmaceutical protein.
    Matched MeSH terms: Recombinant Proteins/metabolism
  17. Hajissa K, Zakaria R, Suppian R, Mohamed Z
    BMC Infect Dis, 2017 12 29;17(1):807.
    PMID: 29284420 DOI: 10.1186/s12879-017-2920-9
    BACKGROUND: The inefficiency of the current tachyzoite antigen-based serological assays for the serodiagnosis of Toxoplasma gondii infection mandates the need for acquirement of reliable and standard diagnostic reagents. Recently, epitope-based antigens have emerged as an alternative diagnostic marker for the achievement of highly sensitive and specific capture antigens. In this study, the diagnostic utility of a recombinant multiepitope antigen (USM.TOXO1) for the serodiagnosis of human toxoplasmosis was evaluated.

    METHODS: An indirect enzyme-linked immunosorbent assay (ELISA) was developed to evaluate the usefulness of USM.TOXO1 antigen for the detection of IgG antibodies against Toxoplasma gondii in human sera. Whereas the reactivity of the developed antigen against IgM antibody was evaluated by western blot and Dot enzyme immunoassay (dot-EIA) analysis.

    RESULTS: The diagnostic performance of the new antigens in IgG ELISA was achieved at the maximum values of 85.43% and 81.25% for diagnostic sensitivity and specificity respectively. The USM.TOXO1 was also proven to be reactive with anti- T. gondii IgM antibody.

    CONCLUSIONS: This finding makes the USM.TOXO1 antigen an attractive candidate for improving the toxoplasmosis serodiagnosis and demonstrates that multiepitope antigens could be a potential and promising diagnostic marker for the development of high sensitive and accurate assays.

    Matched MeSH terms: Recombinant Proteins/metabolism
  18. Ng MY, Tan WS, Tey BT
    PMID: 22819608 DOI: 10.1016/j.jchromb.2012.06.043
    Fusion M13 phage with disulfide constrained heptapeptide, C-WSFFSNI-C, inserted into the minor coat protein (gpIII), has been selected in the current study as ligand in direct purification of hepatitis B core antigen (HBcAg) from unclarified Escherichia coli (E. coli) feedstock. The selected fusion phage showed strong association with the surface of the core particle. In the present study, this fusion M13 phage was immobilized onto Streamline base matrix via epoxy activation and used as adsorbent to capture HBcAg from crude E. coli homogenate. The maximum binding capacity for the adsorbent was 3.76 mg/mL with equilibrium coefficient of 1.83 mg/mL. Due to the slow uptake rate of HBcAg by M13 phage-immobilized adsorbents, a modified EBAC operation with recirculation of feedstock into the expanded bed has been investigated in this study. The introduction of feedstock recirculation has led to an 18% increase in yield; however, the purity of the eluted product was reduced by 15% compared with typical EBAC operation. The level of antigenicity exhibited by the core particles purified by both EBAC operations employed in the present study was comparable to that purified using sucrose ultracentrifugation.
    Matched MeSH terms: Recombinant Proteins/metabolism
  19. Subramanian SK, Tey BT, Hamid M, Tan WS
    J Virol Methods, 2009 Dec;162(1-2):179-83.
    PMID: 19666056 DOI: 10.1016/j.jviromet.2009.07.034
    The broad species tropism of Nipah virus (NiV) coupled with its high pathogenicity demand a rapid search for a new biomarker candidate for diagnosis. The matrix (M) protein was expressed in Escherichia coli and purified using a Ni-NTA affinity column chromatography and sucrose density gradient centrifugation. The recombinant M protein with the molecular mass (Mr) of about 43 kDa was detected by anti-NiV serum and anti-myc antibody. About 50% of the M protein was found to be soluble and localized in cytoplasm when the cells were grown at 30 degrees C. Electron microscopic analysis showed that the purified M protein assembled into spherical particles of different sizes with diameters ranging from 20 to 50 nm. The purified M protein showed significant reactivity with the swine sera collected during the NiV outbreak, demonstrating its potential as a diagnostic reagent.
    Matched MeSH terms: Recombinant Proteins/metabolism
  20. Tan YY, Wade JD, Tregear GW, Summers RJ
    Br J Pharmacol, 1999 May;127(1):91-8.
    PMID: 10369460
    The binding characteristics of the relaxin receptor in rat atria, uterus and cortex were studied using a [33P]-labelled human gene 2 relaxin (B33) and quantitative receptor autoradiography. The binding kinetics of [33P]-human gene 2 relaxin (B33) were investigated in slide-mounted rat atrial sections. The binding achieved equilibrium after 60 min incubation at room temperature (23+/-1 degrees C) and dissociated slowly. The association and dissociation rate constants were 4.31+/-0.34x10(8) M(-1) x min(-1) and 1.55+/-0.38x10(-3) min(-1) respectively. Thus, the kinetic dissociation constant was 3.46+/-0.59 pM. Binding was saturable to a single population of non-interacting sites throughout atria, in uterine myometrium and the 5th layer of cerebral cortex. The binding affinities (pK(D)) of [33P]-human gene 2 relaxin (B33) were 8.92+/-0.09 in atrial myocardium and 8.79+/-0.04 in cerebral cortex of male rats, and 8.79+/-0.10 in uterine myometrium. Receptor densities in the cerebral cortex and atria were higher than in uterine myometrium, indicating that relaxin also has important roles in non-reproductive tissues. In male rats, treatment with 17beta-oestradiol (20 microg in 0.1 ml sesame oil s.c., 18-24 h) significantly decreased the density of relaxin receptors in atria and cerebral cortex. Identical treatment in female rats had no significant effect in atria and cerebral cortex, but it significantly increased the density of relaxin receptors in uterine myometrium. Relaxin binding was competitively displaced by porcine and rat native relaxins. Porcine native relaxin binds to the relaxin receptor in male rat atria (8.90+/-0.02), and cerebral cortex (8.90+/-0.03) and uterine myometrium (8.89+/-0.03) with affinities not significantly different from human gene 2 (B33) relaxin. Nevertheless, rat relaxin binds to the receptors with affinities (8.35+/-0.09 in atria, 8.22+/-0.07 in cerebral cortex and 8.48+/-0.06 in uterine myometrium) significantly less than human gene 2 (B33) and porcine relaxins. Quantitative receptor autoradiography is the method of choice for measurement of affinities and densities of relaxin receptor in atria, uterine myometrium and cerebral cortex. High densities were found in all these tissues. 17beta-oestradiol treatment produced complex effects where it increased the densities of relaxin receptors in uterus but decreased those in atria and cerebral cortex of the male rats, and had no effect on the atria and cerebral cortex of the female rats.
    Matched MeSH terms: Recombinant Proteins/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links