Displaying publications 81 - 98 of 98 in total

Abstract:
Sort:
  1. Durden LA, Beaucournu JC
    Parasite, 2006 Sep;13(3):215-26.
    PMID: 17007213 DOI: 10.1051/parasite/2006133215
    Gryphopsylla maxomydis n. sp. (Pygiopsyllidae), Medwayella rubrisciurae n. sp. (Pygiopsyllidae) and Macrostylophora theresae n. sp. (Ceratophyllidae) are described from endemic rodents in Sulawesi. Gryphopsylla maxomydis was collected from the murids Maxomys musschenbroekii and Paruromys dominator in Central Sulawesi (Sulawesi Tengah). However, M. musschenbroekii appears to be the true host of this flea because it has spiny pelage and G. maxomydis shows morphological adaptations for parasitizing spiny hosts including a remarkable "beak-like" structure on the head. This adatation is similar to a beak-like structure on the head of Gryphopsyllo hopkinsi (Traub) which parasitizes the spiny murid Maxomys whiteheadi in Borneo (Sabah). Medwayella rubrisciurae was collected from the large tree squirrel Rubrisciurus rubriventer in Central Sulawesi and this represents the first report of this flea genus in Sulawesi. Macrostylophora theresce was recorded from the murids Bunomys fratrorum, P. dominator and Rattus xanthurus in North Sulawesi (Sulawesi Utara); most other members of this flea genus parasitize squirrels in the Oriental and Palaearctic zoogeographical regions.
    Matched MeSH terms: Rodentia
  2. Loong SK, Lim FS, Khoo JJ, Lee HY, Suntharalingam C, Ishak SN, et al.
    Trop Biomed, 2020 Sep 01;37(3):803-811.
    PMID: 33612793 DOI: 10.47665/tb.37.3.803
    Ticks are vectors of bacteria, protozoa and viruses capable of causing serious and life threatening diseases in humans and animals. Disease transmission occurs through the transfer of pathogen from tick bites to susceptible humans or animals. Most commonly known tick-borne pathogens are obligate intracellular microorganisms but little is known on the prevalence of culturable pathogenic bacteria from ticks capable of growth on artificial nutrient media. One hundred and forty seven ticks originating from dairy cattle, goats and rodents were collected from nine selected sites in Peninsular Malaysia. The culture of surfacesterilized tick homogenates revealed the isolation of various pathogenic bacteria including, Staphylococcus sp., Corynebacterium sp., Rothia sp., Enterococcus faecalis, Klebsiella pneumoniae, Escherichia coli and Bacillus sp. and its derived genera. These pathogens are among those that affect humans and animals. Findings from this study suggest that in addition to the regular intracellular pathogens, ticks could also harbor extracellular pathogenic bacteria. Further studies, hence, would be needed to determine if these extracellular pathogens could contribute to human or animal infection.
    Matched MeSH terms: Rodentia
  3. Dehghan F, Soori R, Dehghan P, Gholami K, Muniandy S, Azarbayjani MA, et al.
    PLoS One, 2016;11(8):e0160984.
    PMID: 27513858 DOI: 10.1371/journal.pone.0160984
    The changes in knee laxity and relaxin receptor expression at different phases of rodent estrous cycle are not known. Here, changes in the parameter were investigated in rats at different phases of the estrous cycle. Estrous cycle phases of intact female rats were determined by cytological examination of the vaginal smear. Following phase identification, blood was collected for serum hormone analyses. Knee passive range of motion (ROM) was determined by using a digital miniature goniometer. The animals were then sacrificed and patellar tendon, collateral ligaments and hamstring muscles were harvested for relaxin/insulin-like family peptide receptor 1 and 2 (RXFP1/RXFP2) analyses. Knee passive ROM was the highest at proestrus followed by diestrus and the lowest at estrus. Estrogen level was the highest at proestrus while progesterone and relaxin levels were the highest at diestrus. A strong correlation was observed between relaxin and progesterone levels. At proestrus, expression of RXFP1 and RXFP2 proteins and mRNAs were the highest at proestrus followed by diestrus and estrus. The finding shows that higher level of progesterone and relaxin in diestrus might be responsible for higher laxity of knee joint in rats.
    Matched MeSH terms: Rodentia
  4. Ubuka T, Moriya S, Soga T, Parhar I
    PMID: 29643838 DOI: 10.3389/fendo.2018.00139
    Perinatal exposure of Bisphenol A (BPA) to rodents modifies their behavior in later life. To understand how BPA modifies their neurodevelopmental process, we first searched for BPA responsive genes from androgen and estrogen receptor signaling target genes by polymerase chain reaction array in the neonatal male rat brain. We used a transgenic strain of Wistar rats carrying enhanced green fluorescent protein tagged to gonadotropin-inhibitory hormone (GnIH) promoter to investigate the possible interaction of BPA responsive genes and GnIH neurons. We found upregulation of transmembrane protease serine 2 (Tmprss2), an androgen receptor signaling target gene, and downregulation of Forkhead box A1 (Foxa1), an ER signaling target gene, in the medial amygdala of male rats that were subcutaneously administered with BPA from day 1 to 3. Tmprss2-immunoreactive (ir) cells were distributed in the olfactory bulb, cerebral cortex, hippocampus, amygdala, and hypothalamus in 3 days old but not in 1-month-old male rats. Density of Tmprss2-ir cells in the medial amygdala was increased by daily administration of BPA from day 1 to 3. Tmprss2 immunoreactivity was observed in 26.5% of GnIH neurons clustered from the ventral region of the ventromedial hypothalamic nucleus to the dorsal region of the arcuate nucleus of 3-day-old male rat hypothalamus. However, Tmprss2 mRNA expression significantly decreased in the amygdala and hypothalamus of 1-month-old male rats. Foxa1 mRNA expression was higher in the hypothalamus than the amygdala in 3 days old male rats. Intense Foxa1-ir cells were only found in the peduncular part of lateral hypothalamus of 3-day-old male rats. Density of Foxa1-ir cells in the hypothalamus was decreased by daily administration of BPA from day 1 to 3. Foxa1 mRNA expression in the hypothalamus also significantly decreased at 1 month. These results suggest that BPA disturbs the neurodevelopmental process and behavior of rats later in their life by modifying Tmprss2 and Foxa1 expressions in the brain.
    Matched MeSH terms: Rodentia
  5. Zakaria R, Ahmad AH, Othman Z
    Folia Biol. (Praha), 2016;62(5):181-187.
    PMID: 27978412
    Pineal melatonin biosynthesis is regulated by the circadian clock located in the suprachiasmatic nucleus of the hypothalamus. Melatonin has been found to modulate the learning and memory process in human as well as in animals. Endogenous melatonin modulates the process of newly acquired information into long-term memory, while melatonin treatment has been found to reduce memory deficits in elderly people and in various animal models. However, the mechanisms mediating the enhancing effect of melatonin on memory remain elusive. This review intends to explore the possible mechanisms by looking at previous data on the effects of melatonin treatment on memory performance in rodents.
    Matched MeSH terms: Rodentia
  6. Ding C, Lim LL, Xu L, Kong APS
    J Obes Metab Syndr, 2018 Mar 30;27(1):4-24.
    PMID: 31089536 DOI: 10.7570/jomes.2018.27.1.4
    Rising global prevalence and incidence of obesity lead to increased cardiovascular-renal complications and cancers. Epidemiological studies reported a worldwide trend towards suboptimal sleep duration and poor sleep quality in parallel with this obesity epidemic. From rodents and human models, it is highly plausible that abnormalities in sleep, both quantity and quality, impact negatively on energy metabolism. While excess dietary intake and physical inactivity are the known drivers of the obesity epidemic, promotion of healthy sleep habits has emerged as a new target to combat obesity. In this light, present review focuses on the existing literature examining the relationship between sleep physiology and energy homeostasis. Notably, sleep dysregulation perturbs the metabolic milieu via alterations in hormones such as leptin and ghrelin, eating behavior, neuroendocrine and autonomic nervous systems. In addition, shift work and trans-meridian air travel may exert a negative influence on the hypothalamic-pituitary-adrenal axis and trigger circadian misalignment, leading to impaired glucose tolerance and increased fat accumulation. Amassing evidence has also suggested that uncoupling of the circadian clock can increase the risk of adverse metabolic health. Given the importance of sleep in maintaining energy homeostasis and that it is potentially modifiable, promoting good sleep hygiene may create new avenues for obesity prevention and treatment.
    Matched MeSH terms: Rodentia
  7. Liao JF, Hsu CC, Chou GT, Hsu JS, Liong MT, Tsai YC
    Benef Microbes, 2019 Apr 19;10(4):425-436.
    PMID: 30882243 DOI: 10.3920/BM2018.0077
    Maternal separation (MS) has been developed as a model for inducing stress and depression in studies using rodents. The concept of the gut-brain axis suggests that gut health is essential for brain health. Here, we present the effects of administration of a probiotic, Lactobacillus paracasei PS23 (PS23), to MS mice against psychological traits including anxiety and depression. The administration of live and heat-killed PS23 cells showed positive behavioural effects on MS animals, where exploratory tendencies and mobility were increased in behavioural tests, indicating reduced anxiety and depression compared to the negative control mice (P<0.05). Mice administered with both live and heat-killed PS23 cells also showed lower serum corticosterone levels accompanied by higher serum anti-inflammatory interleukin 10 (IL-10) levels, compared to MS separated mice (P<0.05), indicating a stress-elicited response affiliated with increased immunomodulatory properties. Assessment of neurotransmitters in the brain hippocampal region revealed that PS23 affected the concentrations of dopaminergic metabolites differently than the control, suggesting that PS23 may have improved MS-induced stress levels via neurotransmitter pathways, such as dopamine or other mechanisms not addressed in the current study. Our study illustrates the potential of a probiotic in reversing abnormalities induced by early life stress and could be an alternative for brain health along the gut-brain axis.
    Matched MeSH terms: Rodentia
  8. Wang L, Wei LY, Ding R, Feng Y, Li D, Li C, et al.
    Front Physiol, 2020;11:155.
    PMID: 32174842 DOI: 10.3389/fphys.2020.00155
    Accumulating epidemiological evidence supports that chronic exposure to ambient fine particular matters of <2.5 μm (PM2.5) predisposes both children and adults to Alzheimer's disease (AD) and age-related brain damage leading to dementia. There is also experimental evidence to show that PM2.5 exposure results in early onset of AD-related pathologies in transgenic AD mice and development of AD-related and age-related brain pathologies in healthy rodents. Studies have also documented that PM2.5 exposure causes AD-linked molecular and cellular alterations, such as mitochondrial dysfunction, synaptic deficits, impaired neurite growth, neuronal cell death, glial cell activation, neuroinflammation, and neurovascular dysfunction, in addition to elevated levels of amyloid β (Aβ) and tau phosphorylation. Oxidative stress and the oxidative stress-sensitive TRPM2 channel play important roles in mediating multiple molecular and cellular alterations that underpin AD-related cognitive dysfunction. Documented evidence suggests critical engagement of oxidative stress and TRPM2 channel activation in various PM2.5-induced cellular effects. Here we discuss recent studies that favor causative relationships of PM2.5 exposure to increased AD prevalence and AD- and age-related pathologies, and raise the perspective on the roles of oxidative stress and the TRPM2 channel in mediating PM2.5-induced predisposition to AD and age-related brain damage.
    Matched MeSH terms: Rodentia
  9. Parasuraman S, Raveendran R, Rajesh NG, Nandhakumar S
    Toxicol Rep, 2014;1:596-611.
    PMID: 28962273 DOI: 10.1016/j.toxrep.2014.08.006
    OBJECTIVE: To investigate the toxicological effects of cleistanthin A and cleistanthin B using sub-chronic toxicity testing in rodents.

    METHOD: Cleistanthins A and B were isolated from the leaves of Cleistanthus collinus. Both the compounds were administered orally for 90 days at the concentration of 12.5, 25 and 50 mg/kg, and the effects on blood pressure, biochemical parameters and histology were assessed. The dose for sub-chronic toxicology was determined by fixed dose method according to OECD guidelines.

    RESULT: Sub-chronic toxicity study of cleistanthins A and B spanning over 90 days at the dose levels of 12.5, 25 and 50 mg/kg (once daily, per oral) revealed a significant dose dependant toxic effect in lungs. The compounds did not have any effect on the growth of the rats. The food and water intake of the animals were also not affected by both cleistanthins A and B. Both the compounds did not have any significant effect on liver and renal markers. The histopathological analysis of both cleistanthins A and B showed dose dependent morphological changes in the brain, heart, lung, liver and kidney. When compared to cleistanthin A, cleistanthin B had more toxic effect in Wistar rats. Both the compounds have produced a dose dependent increase of corpora amylacea in brain and induced acute tubular necrosis in kidneys. In addition, cleistanthin B caused spotty necrosis of liver in higher doses.

    CONCLUSION: The present study concludes that both cleistanthin A and cleistanthin B exert severe toxic effects on lungs, brain, liver, heart and kidneys. They do not cause any significant pathological change in the reproductive system; neither do they induce neurodegenerative changes in brain. When compared to cleistanthin A, cleistanthin B is more toxic in rats.

    Matched MeSH terms: Rodentia
  10. Garba B, Bahaman AR, Bejo SK, Zakaria Z, Mutalib AR, Bande F
    Acta Trop, 2018 Feb;178:242-247.
    PMID: 29217379 DOI: 10.1016/j.actatropica.2017.12.010
    INTRODUCTION: Leptospirosis is a zoonotic disease caused by a diverse pathogenic leptospira species and serovars. The disease is transmitted directly following contact with infected urine and other body fluids or indirectly after contact with water or soil contaminated with infected urine.

    OBJECTIVES: While a wide range of domestic and wild animals are known to be reservoirs of the disease, occupation, international travel and recreation are beginning to assume a center stage in the transmission of the disease. The objective of this study is to review available literatures to determine the extent to which these aforementioned risk factors aid the transmission, increase incidence and outbreak of leptospirosis in Malaysia.

    STUDY DESIGN: The review was conducted based on prevalence, incidence, and outbreak cases of leptospirosis among human and susceptible animals predisposed to several of the risk factors identified in Malaysia.

    METHODS: Literature searchers and reviews were conducted based on articles published in citation index journals, Malaysian ministry of health reports, periodicals as well as reliable newspapers articles and online media platforms. In each case, the newspapers and online media reports were supported by press briefings by officials of the ministry of health and other agencies responsible.

    RESULTS: The disease is endemic in Malaysia, and this was attributed to the large number of reservoir animals, suitable humid and moist environment for proliferation as well as abundant forest resources. Over 30 different serovars have been detected in Malaysia in different domestic and wild animal species. This, in addition to the frequency of flooding which has increased in recent years, and has helped increase the risk of human exposure. Occupation, recreation, flooding and rodent population were all identified as an important source and cause of the disease within the study population.

    CONCLUSION: There is an urgent need for the government and other stakeholders to intensify efforts to control the spread of the disease, especially as it greatly affect human health and the tourism industry which is an important component of the Malaysian economy. The risk of infection can be minimized by creating awareness on the source and mode of transmission of the disease, including the use of protective clothing and avoiding swimming in contaminated waters. Moreover, improved diagnostics can also help reduce the suffering and mortalities that follow infection after exposure to infection source.

    Matched MeSH terms: Rodentia
  11. Mohd Sairazi NS, Sirajudeen KN, Asari MA, Muzaimi M, Mummedy S, Sulaiman SA
    PMID: 26793262 DOI: 10.1155/2015/972623
    Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS). In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA). KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration.
    Matched MeSH terms: Rodentia
  12. Mohan S, Bustamam A, Ibrahim S, Al-Zubairi AS, Aspollah M, Abdullah R, et al.
    PMID: 21785623 DOI: 10.1093/ecam/neq010
    The plant Typhonium flagelliforme, commonly known as "rodent tuber" in Malaysia, is often used as a health supplement and traditional remedy for alternative cancer therapies, including leukemia. This study aimed to evaluate in vitro anti-leukemic activity of dichloromethane extract/fraction number 7 (DCM/F7) from T. flagelliforme tuber on human T4 lymphoblastoid (CEMss) cell line. The DCM extract of tuber has been fractionated by column chromatography. The obtained fractions were evaluated for its cytotoxicity toward CEMss cells as well as human primary blood lymphocytes (PBLs). Assessment of apoptosis produced by the most active fraction was evaluated by various microscopic techniques and further confirmation of apoptosis was done by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Phytochemical screening was done by gas chromatography-mass spectrometry (GC-MS). The results shows that 7 out of 12 fractions showed significant cytotoxicity against the selected cell line CEMss, in which fractions DCM/F7, DCM/F11 and DCM/F12 showed exceptional activity with 3, 5 and 6.2 μg ml(-1), respectively. Further studies in the non-cancerous PBL exhibited significant selectivity of DCM/F7 compared to other fractions. Cytological observations showed chromatin condensation, cell shrinkage, abnormalities of cristae, membrane blebbing, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by double-staining of acridine orange (AO)/propidium iodide (PI), SEM and TEM. In addition, DCM/F7 has increased the cellular DNA breaks on treated cells. GC-MS revealed that DCM/F7 contains linoleic acid, hexadecanoic acid and 9-hexadecanoic acid. The present results indicate that T. flagelliforme possess a valuable anti-leukemic effect and was able to produce distinctive morphological features of cell death that corresponds to apoptosis.
    Matched MeSH terms: Rodentia
  13. Simpson DI, Bowen ET, Platt GS, Way H, Smith CE, Peto S, et al.
    Trans R Soc Trop Med Hyg, 1970;64(4):503-10.
    PMID: 4394986
    Matched MeSH terms: Rodentia
  14. Ahmad N, Samiulla DS, Teh BP, Zainol M, Zolkifli NA, Muhammad A, et al.
    Pharmaceutics, 2018 Jul 11;10(3).
    PMID: 29997335 DOI: 10.3390/pharmaceutics10030090
    Eurycoma longifolia is one of the commonly consumed herbal preparations and its major chemical compound, eurycomanone, has been described to have antimalarial, antipyretic, aphrodisiac, and cytotoxic activities. Today, the consumption of E. longifolia is popular through the incorporation of its extract in food items, most frequently in drinks such as tea and coffee. In the current study, the characterisation of the physicochemical and pharmacokinetic (PK) attributes of eurycomanone were conducted via a series of in vitro and in vivo studies in rats and mice. The solubility and chemical stability of eurycomanone under the conditions of the gastrointestinal tract environment were determined. The permeability of eurycomanone was investigated by determining its distribution coefficient in aqueous and organic environments and its permeability using the parallel artificial membrane permeability assay system and Caco-2 cultured cells. Eurycomanone's stability in plasma and its protein-binding ability were measured by using an equilibrium dialysis method. Its stability in liver microsomes across species (mice, rat, dog, monkey, and human) and rat liver hepatocytes was also investigated. Along with the PK evaluations of eurycomanone in mice and rats, the PK parameters for the Malaysian Standard (MS: 2409:201) standardised water extract of E. longifolia were also evaluated in rats. Both rodent models showed that eurycomanone in both the compound form and extract form had a half-life of 0.30 h. The differences in the bioavailability of eurycomanone in the compound form between the rats (11.8%) and mice (54.9%) suggests that the PK parameters cannot be directly extrapolated to humans. The results also suggest that eurycomanone is not readily absorbed across biological membranes. However, once absorbed, the compound is not easily metabolised (is stable), hence retaining its bioactive properties, which may be responsible for the various reported biological activities.
    Matched MeSH terms: Rodentia
  15. El-Gamal M, Salama M, Collins-Praino LE, Baetu I, Fathalla AM, Soliman AM, et al.
    Neurotox Res, 2021 Jun;39(3):897-923.
    PMID: 33765237 DOI: 10.1007/s12640-021-00356-8
    Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by cardinal motor impairments, including akinesia and tremor, as well as by a host of non-motor symptoms, including both autonomic and cognitive dysfunction. PD is associated with a death of nigral dopaminergic neurons, as well as the pathological spread of Lewy bodies, consisting predominantly of the misfolded protein alpha-synuclein. To date, only symptomatic treatments, such as levodopa, are available, and trials aiming to cure the disease, or at least halt its progression, have not been successful. Wong et al. (2019) suggested that the lack of effective therapy against neurodegeneration in PD might be attributed to the fact that the molecular mechanisms standing behind the dopaminergic neuronal vulnerability are still a major scientific challenge. Understanding these molecular mechanisms is critical for developing effective therapy. Thirty-five years ago, Calne and William Langston (1983) raised the question of whether biological or environmental factors precipitate the development of PD. In spite of great advances in technology and medicine, this question still lacks a clear answer. Only 5-15% of PD cases are attributed to a genetic mutation, with the majority of cases classified as idiopathic, which could be linked to exposure to environmental contaminants. Rodent models play a crucial role in understanding the risk factors and pathogenesis of PD. Additionally, well-validated rodent models are critical for driving the preclinical development of clinically translatable treatment options. In this review, we discuss the mechanisms, similarities and differences, as well as advantages and limitations of different neurotoxin-induced rat models of PD. In the second part of this review, we will discuss the potential future of neurotoxin-induced models of PD. Finally, we will briefly demonstrate the crucial role of gene-environment interactions in PD and discuss fusion or dual PD models. We argue that these models have the potential to significantly further our understanding of PD.
    Matched MeSH terms: Rodentia
  16. Yokogawa M
    Adv Parasitol, 1969;7:375-87.
    PMID: 4935271
    Matched MeSH terms: Rodentia
  17. Tay ST, Rohani MY, Ho TM, Devi S
    PMID: 12757225
    Isolation of rickettsiae from patients' blood samples and organ samples of wild rodents from areas with high seroprevalence of rickettsial infections was attempted using cell culture assay and animal passages. L929 mouse fibroblast cells grown in 24 well tissue culture plate were inoculated with buffy coat of febrile patients and examined for the growth of rickettsiae by Giemsa, Gimenez staining and direct immunofluorescence assay. No rickettsiae were isolated from 48 patients' blood samples. No symptomatic infections were noted in mice or guinea pigs infected with 50 organ samples of wild rodents. There was no rickettsial DNA amplified from these samples using various PCR detection systems for Orientia tsutsugamushi, typhus and spotted fever group rickettsiae.
    Matched MeSH terms: Rodentia
  18. Philip N, Bahtiar Affendy N, Ramli SNA, Arif M, Raja P, Nagandran E, et al.
    PLoS Negl Trop Dis, 2020 Mar;14(3):e0008197.
    PMID: 32203511 DOI: 10.1371/journal.pntd.0008197
    BACKGROUND: Leptospirosis, commonly known as rat-urine disease, is a global but endemic zoonotic disease in the tropics. Despite the historical report of leptospirosis in Malaysia, the information on human-infecting species is limited. Determining the circulating species is important to understand its epidemiology, thereby to strategize appropriate control measures through public health interventions, diagnostics, therapeutics and vaccine development.

    METHODOLOGY/PRINCIPLE FINDINGS: We investigated the human-infecting Leptospira species in blood and serum samples collected from clinically suspected leptospirosis patients admitted to three tertiary care hospitals in Malaysia. From a total of 165 patients, 92 (56%) were confirmed cases of leptospirosis through Microscopic Agglutination Test (MAT) (n = 43; 47%), Polymerase Chain Reaction (PCR) (n = 63; 68%) or both MAT and PCR (n = 14; 15%). The infecting Leptospira spp., determined by partial 16S rDNA (rrs) gene sequencing revealed two pathogenic species namely Leptospira interrogans (n = 44, 70%) and Leptospira kirschneri (n = 17, 27%) and one intermediate species Leptospira wolffii (n = 2, 3%). Multilocus sequence typing (MLST) identified an isolate of L. interrogans as a novel sequence type (ST 265), suggesting that this human-infecting strain has a unique genetic profile different from similar species isolated from rodents so far.

    CONCLUSIONS/SIGNIFICANCE: Leptospira interrogans and Leptospira kirschneri were identified as the dominant Leptospira species causing human leptospirosis in Central Malaysia. The existence of novel clinically important ST 265 (infecting human), that is different from rodent L. interrogans strains cautions reservoir(s) of these Leptospira lineages are yet to be identified.

    Matched MeSH terms: Rodentia
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links