Displaying publications 81 - 100 of 143 in total

Abstract:
Sort:
  1. Ibrahim MNM, Iqbal A, Shen CC, Bhawani SA, Adam F
    BMC Chem, 2019 Dec;13(1):17.
    PMID: 31384766 DOI: 10.1186/s13065-019-0537-3
    Titanium dioxide (TiO2) is added in sunscreens due to its ability to absorb ultraviolet (UV) light. However, upon irradiation of UV light, reactive oxygen species particularly hydroxyl radical which can damage human skin will be generated. In this study, lignin/TiO2 composites were employed to quench the hydroxyl radicals generated by the TiO2. The lignin was extracted from oil palm empty fruit bunch (OPEFB) via kraft and soda pulping processes. The kraft lignin composite was labelled as KL/TiO2 whereas the soda lignin composite was labelled as SL/TiO2. The lignins and the composites were characterized by FTIR, UV spectroscopy, 13C NMR, SEM, EDX, and XRD. The relative hydroxyl radical production of composites and TiO2 were compared through photo-oxidation of coumarin to 7-hydroxycoumarin as a test medium. The effect of types and amounts of lignin used were studied. The KL/TiO2 composite showed the least radical production due to higher phenolic hydroxyl content of kraft lignin. The activity of the hydroxyl radicals will be quenched when it abstract hydrogen atoms from the phenolic hydroxyl groups.
    Matched MeSH terms: Ultraviolet Rays
  2. Wong KA, Lam SM, Sin JC
    J Nanosci Nanotechnol, 2019 08 01;19(8):5271-5278.
    PMID: 30913844 DOI: 10.1166/jnn.2019.16816
    Shaped-controlled ZnO architectures including spherical, rod, rice-like and flower-like were fabricated via a reflux method in which the morphology, crystallinity, functional group and optical properties were tailored under different pH values in the precursor solution. The photoactivities of the prepared ZnO were evaluated under UV irradiation and the findings implied that the flower-like ZnO synthesized at pH 12 displayed superior activities on palm oil mil effluent degradation than those of other structures. The photocatalytic enhancement of flower-like ZnO was ascribed to its unique architecture, good crystallinity and superior optical properties. The flower-like ZnO with excellent photocatalytic performance have been confirmed by formation of hydroxyl radicals using a terephthalic acid-photoluminescence test. There was an optimal photocatalyst amount of 1.0 g/L, at which a maximum chemical oxygen demand removal of palm oil mill effluent was achieved under exposure of UV light. The phytotoxicity experiment via mung beans demonstrated a decrease in phytotoxicity.
    Matched MeSH terms: Ultraviolet Rays
  3. Samira, S., Thuan-Chew Tan, T.C., Azhar, M.E.
    MyJurnal
    The effect of ribose-induced Maillard reaction on the physical and mechanical properties of gelatin films was investigated. Bovine gelatin solution (5 g/100 mL) containing glycerol and sorbitol (1:1) was mixed with 20% (R20), 40% ribose (R40), or 40% sucrose (S40) (weight % is based on gelatin dry weight) followed by heating (90ºC, 2 h) and oven drying to produce dried gelatin films. R20 and R40 films were brownish in color with lower light transparency, while CF (control film; without sugars) and S40 were colorless and had higher transparency. Tensile strength and Young Modulus values of the films were in the order; CF > R20 > R40 > S40, while elongation at break was in the order; R40 > S40 > R20 > CF. Water solubility and swelling percentages of the films were in the order; CF > S40 > R20 > R40, indicating the occurrence of insoluble “Maillard complexes” within R20 and R40 films. R20 and R40 films showed maximum light absorption at wavelength of 200 − 350 nm, whilst S40 and CF showed maximum absorbance at 200 − 250 nm. The addition of ribose yielded gelatin films with increased protection against UV light, even though the presence of sugars might had disrupted the inter connection of junction zones and decrease in mechanical properties. Occurrence of the Maillard reaction within R20 and R40 films could be the main reason for differences in physical and mechanical properties of films containing ribose that were formed from heated film-forming solutions.
    Matched MeSH terms: Ultraviolet Rays
  4. Al-Juhaimi F, Ghafoor K, Özcan MM, Jahurul MHA, Babiker EE, Jinap S, et al.
    J Food Sci Technol, 2018 Oct;55(10):3872-3880.
    PMID: 30228385 DOI: 10.1007/s13197-018-3370-0
    Bioactive compounds from plant sources are generally categorized as natural antioxidants with well-known health benefits. The health-promoting characteristics of natural antioxidants include anti-inflammatory, anti-diabetic, and hepatic effects as well as free radical scavenging. Herein, a comprehensive and comparative review are presented about the effects of conventional (thermal and mechanical) and relatively new (non-thermal) processing methods on phytochemicals and discussed the importance of implementing the use of those methods that could be of very helpful retaining the quality of the bioactive compounds in plant-based foods. Plant-based foods rich in phenolics, vitamin C, carotenoids, and other compounds undergo a range of processing operations before they are consumed. Most of these methods involve thermal treatments of fruits, stems, leaves, and roots. These techniques have varying effects on bioactive compounds and their activities, and the magnitude of these effects depends on process parameters such as temperature, time, and the food matrix. Thermal processing can be detrimental to bioactive compounds while nonthermal procedures may not cause significant deterioration of important health-promoting phytochemicals and in some cases can improve their bio-activity and bio-availability. The detrimental effects of conventional processing on the quality of natural antioxidants have been compared to the effects of innovative nonthermal food treatments such as gamma and ultraviolet irradiation, ultraviolet light, pulsed electric fields, and high hydrostatic pressure.
    Matched MeSH terms: Ultraviolet Rays
  5. Abu Bakar NI, Chandren S, Attan N, Leaw WL, Nur H
    Front Chem, 2018;6:370.
    PMID: 30255010 DOI: 10.3389/fchem.2018.00370
    The demonstration of the structure-properties relationship of shape-dependent photocatalysts remains a challenge today. Herein, one-dimensional (1-D)-like titania (TiO2), as a model photocatalyst, has been synthesized under a strong magnetic field in the presence of a magnetically responsive liquid crystal as the structure-aligning agent to demonstrate the relationship between a well-aligned structure and its photocatalytic properties. The importance of the 1-D-like TiO2 and its relationship with the electronic structures that affect the electron-hole recombination and the photocatalytic activity need to be clarified. The synthesis of 1-D-like TiO2 with liquid crystal as the structure-aligning agent was carried out using the sol-gel method under a magnetic field (0.3 T). The mixture of liquid crystal, 4'-pentyl-4-biphenylcarbonitrile (5CB), tetra-n-butyl orthotitanate (TBOT), 2-propanol, and water, was subjected to slow hydrolysis under a magnetic field. The TiO2-5CB took a well-aligned whiskerlike shape when the reaction mixture was placed under the magnetic field, while irregularly shaped TiO2-5CB particles were formed when no magnetic field was applied. It shows that the strong interaction between 5CB and TBOT during the hydrolysis process under a magnetic field controls the shape of titania. The intensity of the emission peaks in the photoluminescence spectrum of 1-D-like TiO2-5CB was lowered compared with the TiO2-5CB synthesized without the magnetic field, suggesting the occurrence of electron transfer from 5CB to the 1-D-like TiO2-5CB during ultraviolet irradiation. Apart from that, direct current electrical conductivity and Hall effect studies showed that the 1-D-like TiO2 composite enhanced electron mobility. Thus, the recombination of electrons and holes was delayed due to the increase in electron mobility; hence, the photocatalytic activity of the 1-D-like TiO2 composite in the oxidation of styrene in the presence of aqueous hydrogen peroxide under UV irradiation was enhanced. This suggests that the 1-D-like shape of TiO2 composite plays an important role in its photocatalytic activity.
    Matched MeSH terms: Ultraviolet Rays
  6. Fatimah I, Prakoso NI, Sahroni I, Musawwa MM, Sim YL, Kooli F, et al.
    Heliyon, 2019 Nov;5(11):e02766.
    PMID: 31844705 DOI: 10.1016/j.heliyon.2019.e02766
    In this work, TiO2/SiO2 composite photocatalysts were prepared using biogenic silica extracted from bamboo leaves and titanium tetraisopropoxide as a titania precursor via a sol-gel mechanism. A study of the physicochemical properties of materials as a function of their titanium dioxide content was conducted using Fourier transform infrared spectroscopy, a scanning electron microscope, a diffuse reflectance ultraviolet-visible (UV-vis) spectrophotometer, and a gas sorption analyzer. The relationship between physicochemical parameters and photocatalytic performance was evaluated using the methylene blue (MB) photocatalytic degradation process under UV irradiation with and without the addition of H2O2 as an oxidant. The results demonstrated that increasing the TiO2 helps enhance the parameters of specific surface area, the pore volume, and the particle size of titanium dioxide, while the band gap energy reaches a maximum of 3.21 eV for 40% and 60% Ti content. The composites exhibit photocatalytic activity with the MB degradation with increasing photocatalytic efficiency since the composites with 40 and 60% wt. of TiO2 demonstrated the higher degradation rate compared with TiO2 in the presence and absence of H2O2. This higher rate is correlated with the higher specific surface area and band gap energy compared with those of TiO2.
    Matched MeSH terms: Ultraviolet Rays
  7. Joon Ching Juan, Sze Nee Goh, Ta Yeong Wu, Emy Marlina Samsudin, Tan Tong Ling, Sharifah Bee Abd. Hamid
    Sains Malaysiana, 2015;44:1011-1019.
    Disposal of dye wastewater into water streams without treatment endangers human and marine lives. This work focused on the second largest class of textile dyes after azo dyes due to its high resistivity to biodegradation and high toxicity. The photocatalytic degradation of Reactive Blue 4 (RB4), an anthraquinone dye, has been investigated using pure anatase nano titanium (IV) oxide (TiO2). The dye molecules were fully degraded and the addition of hydrogen peroxide (H2O2) enhanced the photodegradation efficiency. It is found that the degradation as the hydroxyl radicals in the bulk solution is sufficient for complete mineralisation. The disappearance of the dye follows pseudo-first-order kinetics. The effect of pH, amount of photocatalyst, UV-light intensity, light source and concentration of hydrogen peroxide was ascertained.
    Matched MeSH terms: Ultraviolet Rays
  8. Mansor NA, Tay KS
    Sci Total Environ, 2020 Apr 20;714:136745.
    PMID: 31982754 DOI: 10.1016/j.scitotenv.2020.136745
    Chlorination is a common disinfection method in water treatment. This method can be converted into an advanced oxidation process by incorporating UV irradiation during water treatment. This study investigated the degradation of hydrochlorothiazide (HCTZ) by chlorination and UV/chlorination in water. HCTZ is a diuretic medication that has been frequently detected in wastewater. For chlorination, the second-order rate constant for the reaction between HCTZ with free available chlorine was found to increase with increasing pH from 5 to 8 due to the increase of the anionic HCTZ fraction. UV/chlorination was found to be more efficient in removing HCTZ as compared with chlorination due to the presence of reactive radical species such as hydroxyl radicals. For transformation by-products, chlorination was found to produce two by-products via chlorination and hydroxylation reactions that occurred at the aromatic ring of HCTZ. For UV/chlorination, an additional by-product formed through a radical reaction at the heterocyclic moiety of HCTZ was detected. Based on the Escherichia coli inhibition study, chlorination and UV/chlorination were found to increase the toxicity of the HCTZ solution. This result indicated that even UV/chlorination showed higher effectiveness in removing HCTZ; however, it also has the potential to generate toxic by-products and effluent.
    Matched MeSH terms: Ultraviolet Rays
  9. Abd Samad NA, Lai CW, Lau KS, Abd Hamid SB
    Materials (Basel), 2016 Nov 22;9(11).
    PMID: 28774068 DOI: 10.3390/ma9110937
    Efficient solar driven photoelectrochemical (PEC) response by enhancing charge separation has attracted great interest in the hydrogen generation application. The formation of one-dimensional ZnO nanorod structure without bundling is essential for high efficiency in PEC response. In this present research work, ZnO nanorod with an average 500 nm in length and average diameter of about 75 nm was successfully formed via electrodeposition method in 0.05 mM ZnCl₂ and 0.1 M KCl electrolyte at 1 V for 60 min under 70 °C condition. Continuous efforts have been exerted to further improve the solar driven PEC response by incorporating an optimum content of TiO₂ into ZnO nanorod using dip-coating technique. It was found that 0.25 at % of TiO₂ loaded on ZnO nanorod film demonstrated a maximum photocurrent density of 19.78 mA/cm² (with V vs. Ag/AgCl) under UV illumination and 14.75 mA/cm² (with V vs. Ag/AgCl) under solar illumination with photoconversion efficiency ~2.9% (UV illumination) and ~4.3% (solar illumination). This performance was approximately 3-4 times higher than ZnO film itself. An enhancement of photocurrent density and photoconversion efficiency occurred due to the sufficient Ti element within TiO₂-ZnO nanorod film, which acted as an effective mediator to trap the photo-induced electrons and minimize the recombination of charge carriers. Besides, phenomenon of charge-separation effect at type-II band alignment of Zn and Ti could further enhance the charge carrier transportation during illumination.
    Matched MeSH terms: Ultraviolet Rays
  10. Ummi-Shafiqah, M.S., Fazilah, A., Karim, A.A., Kaur, B., Yusup, Y.
    MyJurnal
    Starch blend films made from sago and mung bean were prepared by casting with glycerol as the plasticizer and subsequently exposed to ultraviolet (UV) irradiation for 2 h. The films were characterized by thickness, moisture sorption isotherms, X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy. All films produced were colorless while incorporation of glycerol resulted in more flexible and manageable films. Moisture sorption isotherms for all films showed sigmoidal shape and the control films showed slightly higher curve than treated films. While for X-ray analysis, the control and treated films for all formulations showed similar pattern, however for treated films showed more crystalline character. UV radiation showed affect on X-ray diffraction and sorption isotherms; however the UV radiation did not affect the spectra pattern of FTIR.
    Matched MeSH terms: Ultraviolet Rays
  11. Gazzali AM, Lobry M, Colombeau L, Acherar S, Azaïs H, Mordon S, et al.
    Eur J Pharm Sci, 2016 Oct 10;93:419-30.
    PMID: 27575880 DOI: 10.1016/j.ejps.2016.08.045
    Folic acid is a small molecule, also known as vitamin B9. It is an essential compound involved in important biochemical processes. It is widely used as a vector for targeted treatment and diagnosis especially in cancer therapeutics. Nevertheless, not many authors address the problem of folic acid degradation. Several researchers reported their observations concerning its denaturation, but they generally only took into account one parameter (pH, temperature, light or O2etc.). In this review, we will focus on five main parameters (assessed individually or in conjunction with one or several others) that have to be taken into account to avoid the degradation of folic acid: light, temperature, concentration, oxygen and pH, which are the most cited in the literature. Scrupulous bibliographic research enabled us to determine two additional degradation factors that are the influence of singlet oxygen and electron beam on folic acid stability, which are not considered as among the prime factors. Although these two factors are not commonly present as compared to the others, singlet oxygen and electron beams intervene in new therapeutic technologies and must be taken in consideration for further applications such photodynamic or X-rays therapies.
    Matched MeSH terms: Ultraviolet Rays
  12. Yousif E, Ahmed DS, Ahmed A, Abdallh M, Yusop RM, Mohammed SA
    Environ Sci Pollut Res Int, 2019 Sep;26(25):26381-26388.
    PMID: 31290046 DOI: 10.1007/s11356-019-05784-w
    A new Schiff base containing 1,2,4-triazole ring system (L) was synthesized and confirmed by 1HNMR, FTIR spectroscopy. The chemical modification of PVC with a new Schiff base (L) was synthesized to produce a homogenous blend (PVC-L). A homogenous blend (PVC-L) was added to copper chloride to produce PVC-L-Cu (II). The PVC films had been irradiated with ultraviolet light for a long period and confirmed by FTIR spectroscopy and weight loss; the surface morphology was inspected by scanning electron microscopy.
    Matched MeSH terms: Ultraviolet Rays
  13. George DS, Razali Z, Santhirasegaram V, Somasundram C
    J Food Sci, 2015 Feb;80(2):S426-34.
    PMID: 25586772 DOI: 10.1111/1750-3841.12762
    The effects of ultraviolet (UV-C) and medium heat (70 °C) treatments on the quality of fresh-cut Chokanan mango and Josephine pineapple were investigated. Quality attributes included physicochemical properties (pH, titratable acidity, and total soluble solids), ascorbic acid content (vitamin C), antioxidant activity, as well as microbial inactivation. Consumers' acceptance was also investigated through sensory evaluation of the attributes (appearance, texture, aroma and taste). Furthermore, shelf-life study of samples stored at 4 ± 1 °C was conducted for 15 d. The fresh-cut fruits were exposed to UV-C for 0, 15, 30, and 60 min while heat treatments were carried out at 70 °C for 0, 5, 10 and 20 min. Both UV-C and medium heat treatments resulted in no significant changes to the physicochemical attributes of both fruits. The ascorbic acid content of UV-C treated fruits was unaffected; however, medium heat treatment resulted in deterioration of ascorbic acids in both fruits. The antioxidants were enhanced with UV-C treatment which could prove invaluable to consumers. Heat treatments on the other hand resulted in decreased antioxidant activities. Microbial count in both fruits was significantly reduced by both treatments. The shelf life of the fresh-cut fruits were also successfully extended to a maximum of 15 d following treatments. As for consumers' acceptance, UV-C treated fruits were the most accepted as compared to their heat-treated counterparts. The results obtained through this study support the use of UV-C treatment for better retention of quality, effective microbial inactivation and enhancement of health promoting compounds for the benefit of consumers.
    Matched MeSH terms: Ultraviolet Rays*
  14. Bhat R, Stamminger R
    Food Sci Technol Int, 2015 Jul;21(5):354-63.
    PMID: 24867944 DOI: 10.1177/1082013214536708
    Freshly prepared, hand-pressed strawberry fruit juice was exposed to ultraviolet radiation (254 nm) at room temperature (25 ℃ ± 1 ℃) for 15, 30 and 60 min with 0 min serving as control. Results revealed decrease in pH, total soluble solids and titratable acidity, while colour parameters (L*, a* and b* values) and clarity of juice (% transmittance) increased significantly. All the results corresponded to exposure time to ultraviolet radiation. Bioactive compounds (total phenolics, ascorbic acid and anthocyanins) decreased along with a recorded reduction in polyphenol oxidase enzyme and 1,1-diphenyl-2-picryl hydrazyl radical scavenging activities, which were again dependent on exposure time. Results on the microbial studies showed significant reduction by 2-log cycles in aerobic plate count as well as in total yeast and mould counts. Though negative results were observed for certain parameters, this is the first time it was endeavoured to demonstrate the impact of ultraviolet radiation radiation on freshly prepared, hand-pressed strawberries juice.
    Matched MeSH terms: Ultraviolet Rays*
  15. Al-Naggar RA
    Asian Pac J Cancer Prev, 2013;14(8):4577-81.
    PMID: 24083705
    BACKGROUND: The objective of this study was to determine the practice of skin cancer prevention among Malaysian road traffic police officers.

    MATERIALS AND METHODS: This cross-sectional study involved 202 Malaysian Road Police Traffic officers. Inclusion criteria were those officers who work wearing white uniform regulating traffic. The survey took place at the Police Traffic Station, Jln Tun H.S. Lee, Kuala Lumpur, the main Head Quarters of Malaysian's Traffic Department where almost 600 police traffic officers are employed. The police traffic officers are given the task to take care of the traffic from the main office of the police station, then, according to the task, the officers drive to their given location for their duty. Each task is approved by the Chief Traffic Inspector of Kuala Lumpur. Data collected in this study were analyzed using SPSS 13, with the T-test for univariate analysis and multiple linear regression for multivariate analysis.

    RESULTS: A total of 202 road traffic police officers participated. The majority were older than 30 years of age, male, Malay, married, with secondary education, with monthly income more than 2000 Ringgit Malaysia (66.3%, 91.1%, 86.6%, 84.7%, 96%, 66.3%; respectively). Regarding the practice of skin cancer prevention, 84.6% of the study participants were found to wear hats, 68.9% sunglasses and 85.6% clothing that covering most of the body but only 16.9% used a sunscreen when they were outdoors. When analysis of the factors that influenced the practice of skin cancer prevention was performed, univariate analysis revealed that gender, age and monthly income significantly influenced the practice of skin cancer prevention. For multivariate analysis, gender, monthly income and race significantly influenced the practice of using sunscreen among road traffic police officers (p<0.001, p=0.019, p=0.027; respectively).

    CONCLUSIONS: The practice of skin cancer prevention among the traffic police officers showed good practices in terms of wearinga hat, sun glasses and clothing that covers most of the body. However, the study revealed a poor practice of the use of sunscreen. The factors that influence the practice of sunscreen use were found to be gender, income, and race. The study suggests that more awareness campaign among traffic police officers is needed. Providing sunscreen for free for police traffic officers should be considered by the Police authorities.

    Matched MeSH terms: Ultraviolet Rays/adverse effects*
  16. Darroudi M, Ahmad MB, Zak AK, Zamiri R, Hakimi M
    Int J Mol Sci, 2011;12(9):6346-56.
    PMID: 22016663 DOI: 10.3390/ijms12096346
    Silver nanoparticles (Ag-NPs) were successfully synthesized using the UV irradiation of aqueous solutions containing AgNO(3) and gelatin as a silver source and stabilizer, respectively. The UV irradiation times influence the particles' diameter of the Ag-NPs, as evidenced from surface plasmon resonance (SPR) bands and transmission electron microscopy (TEM) images. When the UV irradiation time was increased, the mean size of particles continuously decreased as a result of photoinduced Ag-NPs fragmentation. Based on X-ray diffraction (XRD), the UV-irradiated Ag-NPs were a face-centered cubic (fcc) single crystal without any impurity. This study reveals that the UV irradiation-mediated method is a green chemistry and promising route for the synthesis of stable Ag-NPs for several applications (e.g., medical and surgical devices). The important advantages of this method are that it is cheap, easy, and free of toxic materials.
    Matched MeSH terms: Ultraviolet Rays*
  17. Salih AM, Ahmad MB, Ibrahim NA, Dahlan KZ, Tajau R, Mahmood MH, et al.
    Molecules, 2015;20(8):14191-211.
    PMID: 26248072 DOI: 10.3390/molecules200814191
    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.
    Matched MeSH terms: Ultraviolet Rays*
  18. Chang JS, Strunk J, Chong MN, Poh PE, Ocon JD
    J Hazard Mater, 2020 01 05;381:120958.
    PMID: 31416043 DOI: 10.1016/j.jhazmat.2019.120958
    While bulk zinc oxide (ZnO) is of non-toxic in nature, ZnO nanoarchitectures could potentially induce the macroscopic characteristics of oxidative, lethality and toxicity in the water environment. Here we report a systematic study through state-of-the-art controllable synthesis of multi-dimensional ZnO nanoarchitectures (i.e. 0D-nanoparticle, 1D-nanorod, 2D-nanosheet, and 3D-nanoflowers), and subsequent in-depth understanding on the fundamental factor that determines their photoactivities. The photoactivities of resultant ZnO nanoarchitectures were interpreted in terms of the photodegradation of salicylic acid as well as inactivation of Bacillus subtilis and Escherichia coli under UV-A irradiation. Photodegradation results showed that 1D-ZnO nanorods demonstrated the highest salicylic acid photodegradation efficiency (99.4%) with a rate constant of 0.0364 min-1. 1D-ZnO nanorods also exhibited the highest log reductions of B. subtilis and E. coli of 3.5 and 4.2, respectively. Through physicochemical properties standardisation, an intermittent higher k value for pore diameter (0.00097 min-1 per mm), the highest k values for crystallite size (0.00171 min-1 per nm) and specific surface area (0.00339 min-1 per m2/g) contributed to the exceptional photodegradation performance of nanorods. Whereas, the average normalised log reduction against the physicochemical properties of nanorods (i.e. low crystallite size, high specific surface area and pore diameter) caused the strongest bactericidal effect.
    Matched MeSH terms: Ultraviolet Rays*
  19. Nagapan TS, Lim WN, Basri DF, Ghazali AR
    Exp Anim, 2019 Nov 06;68(4):541-548.
    PMID: 31243189 DOI: 10.1538/expanim.19-0017
    Dietary antioxidant supplements such as L-glutathione have gained considerable attention in dermatology and cosmeceutical fields. L-glutathione possesses antiaging, antimelanogenic, antioxidant, and anticancer properties. This study aimed to investigate the inhibitory effects of L-glutathione on melanogenesis activity and oxidative stress in ultraviolet B (UVB)-irradiated BALB/c mice. Eighteen female BALB/c mice were randomly divided into 3 groups: a control group (n=6), a group without UVB irradiation and L-glutathione administration; a UVB irradiated group (n=6), a group irradiated with a UVB dose of 250 mJ/cm2 for 3 min; and a treatment group (n=6), a group irradiated with UVB and treated with 100 mg/kg of L-glutathione by oral gavage. Treatment was given for 14 days, and UVB irradiation was given on days 9, 11, and 13. Oral L-glutathione significantly (P<0.05) reduced lipid peroxidation and elevated superoxide dismutase activity the and glutathione level. L-glutathione also inhibited melanin content and tyrosinase activity significantly (P<0.05) as compared with the UVB-irradiated group. Histopathological examination also showed that L-glutathione reduced the deposition of melanin pigment in the basal layer of the epidermis as compared with that in UVB-irradiated mice. All in all, the present study demonstrated that L-glutathione has the potential to be developed as a photoprotection agent against UVB-induced oxidative stress and melanogenesis.
    Matched MeSH terms: Ultraviolet Rays/adverse effects*
  20. Pramanik BK, Pramanik SK, Sarker DC, Suja F
    Environ Technol, 2017 Jun;38(11):1383-1389.
    PMID: 27587007 DOI: 10.1080/09593330.2016.1228701
    The effects of ozonation, anion exchange resin (AER) and UV/H2O2 were investigated as a pre-treatment to control organic fouling (OF) of ultrafiltration membrane in the treatment of drinking water. It was found that high molecular weight (MW) organics such as protein and polysaccharide substances were majorly responsible for reversible fouling which contributed to 90% of total fouling. The decline rate increased with successive filtration cycles due to deposition of protein content over time. All pre-treatment could reduce the foulants of a Ultrafiltration membrane which contributed to the improvement in flux, and there was a greater improvement of flux by UV/H2O2 (61%) than ozonation (43%) which in turn was greater than AER (23%) treatment. This was likely due to the effective removal/breakdown of high MW organic content. AER gave greater removal of biofouling potential components (such as biodegradable dissolved organic carbon and assimilable organic carbon contents) compared to UV/H2O2 and ozonation treatment. Overall, this study demonstrated the potential of pre-treatments for reducing OF of ultrafiltration for the treatment of drinking water.
    Matched MeSH terms: Ultraviolet Rays*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links