Displaying publications 81 - 100 of 510 in total

Abstract:
Sort:
  1. Khan FSA, Mubarak NM, Khalid M, Walvekar R, Abdullah EC, Mazari SA, et al.
    Environ Sci Pollut Res Int, 2020 Jul;27(19):24342-24356.
    PMID: 32306264 DOI: 10.1007/s11356-020-08711-6
    Due to the rapid growth in the heavy metal-based industries, their effluent and local dumping have created significant environmental issues. In the past, typically, removal of heavy metals was handled by reverse osmosis and ion exchange techniques, but these methods have many disadvantages. Therefore, extensive work into the development of improved techniques has increased, especially for heavy metal removal. Many countries are currently researching new materials and techniques based on nanotechnology for various applications that involve extracting heavy metals from different water sources such as wastewater, groundwater, drinking water and surface water. Nanotechnology provides the possibility of enhancing existing techniques to tackle problems more efficiently. The development in nanotechnology has led to the discovery of many new materials such as magnetic nanoparticles. These nanoparticles demonstrate excellent properties such as surface-volume ratio, higher surface area, low toxicity and easy separation. Besides, magnetic nanoparticles can be easily and efficiently recovered after adsorption compared with other typical adsorbents. This review mainly emphasises on the efficiency of heavy metal removal using magnetic nanoadsorbent from aqueous solution. In addition, an in-depth analysis of the synthesis, characterisation and modification approaches of magnetic nanoparticles is systematically presented. Furthermore, future opportunities and challenges of using magnetic particles as an adsorbent for the removal of heavy metals are also discussed.
    Matched MeSH terms: Water Purification*
  2. Chiam SL, Pung SY, Yeoh FY
    Environ Sci Pollut Res Int, 2020 Feb;27(6):5759-5778.
    PMID: 31933078 DOI: 10.1007/s11356-019-07568-8
    The textile industry consumes a large volume of organic dyes and water. These organic dyes, which remained in the effluents, are usually persistent and difficult to degrade by conventional wastewater treatment techniques. If the wastewater is not treated properly and is discharged into water system, it will cause environmental pollution and risk to living organisms. To mitigate these impacts, the photo-driven catalysis process using semiconductor materials emerges as a promising approach. The semiconductor photocatalysts are able to remove the organic effluent through their mineralization and decolorization abilities. Besides the commonly used titanium dioxide (TiO2), manganese dioxide (MnO2) is a potential photocatalyst for wastewater treatment. MnO2 has a narrow bandgap energy of 1~2 eV. Thus, it possesses high possibility to be driven by visible light and infrared light for dye degradation. This paper reviews the MnO2-based photocatalysts in various aspects, including its fundamental and photocatalytic mechanisms, recent progress in the synthesis of MnO2 nanostructures in particle forms and on supporting systems, and regeneration of photocatalysts for repeated use. In addition, the effect of various factors that could affect the photocatalytic performance of MnO2 nanostructures are discussed, followed by the future prospects of the development of this semiconductor photocatalysts towards commercialization.
    Matched MeSH terms: Water Purification*
  3. Ahmad A, Abdullah SRS, Hasan HA, Othman AR, Ismail N'
    Environ Sci Pollut Res Int, 2022 Jan;29(2):2579-2587.
    PMID: 34374006 DOI: 10.1007/s11356-021-15541-7
    The performance of local plants was tested using synthetic turbid water resembling real wastewater by measuring their ability to remove turbidity. The selected plants were A. indica, S. palustris, D. linearis, S. polyanthum, M. esculenta, P. sarmentosum, and M. malabathricum which can easily be found locally. The experiment was run based on coagulant dosages varied from 0 to 10 g/L for each plant with a rapid mixing speed at 180 rpm for 3 min, slow mixing speed at 10 rpm for 20 min, and settling time for 30 min. The results demonstrated that each plant has been capable of reducing turbidity by different amounts, with an increase in the coagulant dosage. The optimum coagulant dosages achieved for A. indica, S. palustris, S. polyanthum, and D. linearis were 10 g/L with turbidity removal at 26.9%, 24.9%, 24.9%, and 17.5%, respectively. P. sarmentosum and M. esculenta attained optimum coagulant dosages at 5 g/L with turbidity removal at 24.2% and 22.2%, and lastly M. malabathricum at 0.1 g/L (12.2%). P. sarmentosum was suggested to the best natural coagulant which achieved the highest removal of turbidity with a low dosage used.
    Matched MeSH terms: Water Purification*
  4. Ismail W, Niknejad N, Bahari M, Hendradi R, Zaizi NJM, Zulkifli MZ
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71794-71812.
    PMID: 34609681 DOI: 10.1007/s11356-021-16471-0
    As clean water can be considered among the essentials of human life, there is always a requirement to seek its foremost and high quality. Water primarily becomes polluted due to organic as well as inorganic pollutants, including nutrients, heavy metals, and constant contamination with organic materials. Predicting the quality of water accurately is essential for its better management along with controlling pollution. With stricter laws regarding water treatment to remove organic and biologic materials along with different pollutants, looking for novel technologic procedures will be necessary for improved control of the treatment processes by water utilities. Linear regression-based models with relative simplicity considering water prediction have been typically used as available statistical models. Nevertheless, in a majority of real problems, particularly those associated with modeling of water quality, non-linear patterns will be observed, requiring non-linear models to address them. Thus, artificial intelligence (AI) can be a good candidate in modeling and optimizing the elimination of pollutants from water in empirical settings with the ability to generate ideal operational variables, due to its recent considerable advancements. Management and operation of water treatment procedures are supported technically by these technologies, leading to higher efficiency compared to sole dependence on human operations. Thus, establishing predictive models for water quality and subsequently, more efficient management of water resources would be critically important, serving as a strong tool. A systematic review methodology has been employed in the present work to investigate the previous studies over the time interval of 2010-2020, while analyzing and synthesizing the literature, particularly regarding AI application in water treatment. A total number of 92 articles had addressed the topic under study using AI. Based on the conclusions, the application of AI can obviously facilitate operations, process automation, and management of water resources in significantly volatile contexts.
    Matched MeSH terms: Water Purification*
  5. Biswas PP, Chen WH, Lam SS, Park YK, Chang JS, Hoang AT
    J Hazard Mater, 2024 Mar 05;465:133154.
    PMID: 38103286 DOI: 10.1016/j.jhazmat.2023.133154
    Using bone char for contaminated wastewater treatment and soil remediation is an intriguing approach to environmental management and an environmentally friendly way of recycling waste. The bone char remediation strategy for heavy metal-polluted wastewater was primarily affected by bone char characteristics, factors of solution, and heavy metal (HM) chemistry. Therefore, the optimal parameters of HM sorption by bone char depend on the research being performed. Regarding enhancing HM immobilization by bone char, a generic strategy for determining optimal parameters and predicting outcomes is crucial. The primary objective of this research was to employ artificial neural network (ANN) technology to determine the optimal parameters via sensitivity analysis and to predict objective function through simulation. Sensitivity analysis found that for multi-metals sorption (Cd, Ni, and Zn), the order of significance for pyrolysis parameters was reaction temperature > heating rate > residence time. The primary variables for single metal sorption were solution pH, HM concentration, and pyrolysis temperature. Regarding binary sorption, the incubation parameters were evaluated in the following order: HM concentrations > solution pH > bone char mass > incubation duration. This approach can be used for further experiment design and improve the immobilization of HM by bone char for water remediation.
    Matched MeSH terms: Water Purification*
  6. Owodunni AA, Ismail S, Olaiya NG
    Environ Sci Pollut Res Int, 2023 Dec;30(60):124677-124685.
    PMID: 35678970 DOI: 10.1007/s11356-022-21353-0
    Chemical coagulants like alum, ferric salts, and polyacrylamide derivatives are helpful in water treatment. However, the long-term detrimental effects of chemical coagulants on humans and the environment require alternative research for natural coagulants. This study used novel leguminous (green beans (GB), pigeon pea (PP)), fruit seeds (Tamarind indica (TI), and date palm (DS)) as coagulants to remove turbidity. The seeds were powdered, and the crude active coagulants were extracted with distilled water and a 1 M NaCl solution. The result showed that PP's distilled water extract had the highest turbidity removal of 81.12%, while DS had the least performance of 62.54%. The NaCl extract of PP had the highest removal (94.62%), followed by TI (76.08%). This study found the optimum doses for GB, TI, PP, and DS to be 50, 40, 10, and 70 mL/L, with their optimum pH at 3, 1, 3, and 1, respectively. The FTIR spectra confirmed the existence of -OH, -NH, COOH, C = O, C-C, and C-H peaks, indicating the presence of protein-specific functional groups supporting their potential use as coagulants. Therefore, PP would have been used based on turbidity performance; however, due to their nutritional value, TI and DS are suitable seeds for the coagulation-flocculation treatment of turbid water because they are waste materials.
    Matched MeSH terms: Water Purification*
  7. Ngu H, Wong KK, Law PL
    Water Environ Res, 2012 Apr;84(4):299-304.
    PMID: 22834217
    A circular gravity-phase separator using coalescing medium with cross flow was developed to remove oil and suspended solids from wastewaters. Coalescence medium in the form of inclined plates promotes rising of oil droplets through coalescence and settling of solid particles through coagulation. It exhibits 22.67% higher removal of total suspended solids (TSS) compared to separators without coalescing medium. Moreover, it removed more than 70% of oil compared to conventional American Petroleum Institute separators, which exhibit an average of 33% oil removal. The flowrate required to attain an effluent oil concentration of 10 mg/L (Q(o10)) at different influent oil concentrations (C(io)) can be represented by Q(o10) x 10(-5) = -0.0012C(io) + 0.352. The flowrate required to attain an effluent TSS concentration of 50 mg/L (Q(ss50)) at different influent TSS concentrations (C(iss)) can be represented by Q(ss50) x 10(-5) = 1.0 x 10(6) C(iss)(-2.9576). The smallest removable solid particle size was 4.87 microm.
    Matched MeSH terms: Water Purification/instrumentation; Water Purification/methods*; Water Purification/standards
  8. Oon YS, Ong SA, Ho LN, Wong YS, Oon YL, Lehl HK, et al.
    Bioprocess Biosyst Eng, 2016 Jun;39(6):893-900.
    PMID: 26894384 DOI: 10.1007/s00449-016-1568-y
    The main aim of this study is to investigate the performance of organic oxidation and denitrification of the system under long-term operation. The MFC reactor was operated in continuous mode for 180 days. Nitrate was successfully demonstrated as terminal electron acceptor, where nitrate was reduced at the cathode using electron provided by acetate oxidation at the anode. The removal efficiencies of chemical oxygen demand (COD) and nitrate were higher in the closed circuit system than in open circuit system. Both COD and nitrate reduction improved with the increase of organic loading and subsequently contributed to higher power output. The maximum nitrate removal efficiency was 88 ± 4 % (influent of 141 ± 14 mg/L). The internal resistant was 50 Ω, which was found to be low for a double chambered MFC. The maximum power density was 669 mW/m(3) with current density of 3487 mA/m(3).
    Matched MeSH terms: Water Purification
  9. Rahman MM, Ara MG, Alim MA, Uddin MS, Najda A, Albadrani GM, et al.
    Int J Mol Sci, 2021 Apr 26;22(9).
    PMID: 33925852 DOI: 10.3390/ijms22094498
    Mesoporous carbon is a promising material having multiple applications. It can act as a catalytic support and can be used in energy storage devices. Moreover, mesoporous carbon controls body's oral drug delivery system and adsorb poisonous metal from water and various other molecules from an aqueous solution. The accuracy and improved activity of the carbon materials depend on some parameters. The recent breakthrough in the synthesis of mesoporous carbon, with high surface area, large pore-volume, and good thermostability, improves its activity manifold in performing functions. Considering the promising application of mesoporous carbon, it should be broadly illustrated in the literature. This review summarizes the potential application of mesoporous carbon in many scientific disciplines. Moreover, the outlook for further improvement of mesoporous carbon has been demonstrated in detail. Hopefully, it would act as a reference guidebook for researchers about the putative application of mesoporous carbon in multidimensional fields.
    Matched MeSH terms: Water Purification
  10. Asdarina, Y., Abdurrahman, H.N., Amirah, N.F.S., Natrah, S.A.R., Norasmah, M.M., Zulkafli, H.
    MyJurnal
    Increasing demands in palm oil industry hence resulting the production of palm oil to increase. It is then creating a major problem in disposing the waste to be treat in appropriate ways. The governments are forced to look for alternative technology for the palm oil mill effluent (POME) treatment because the demand of oil increases with the awareness on increasing environmental issue. Therefore, a new technology must be found in order to reduce energy consumption, to meet legal requirements on emission and for cost reduction and also increased quality of water treatment. Membrane Anaerobic System (MAS) is a promising alternative way to overcome these issues. In this study, the efficiency of the MAS performance increases to 99.03% in ten days operation. The application of Monod, Contois and Chen & Hashimoto models were used to analyze the performance of MAS for treating POME. The results from the experiment show the substrate removal model is well fits for estimation of kinetics membrane anaerobic system. Amongst them, the Contois and Monod models predicted the bio-kinetic reactions of the MAS very well with coefficient of determination (R2>97%) values. The MAS bioreactor was creating to be an improvement method as well as successful biological treatment since the graph shows linearized which is good agreement with reported in literature.
    Matched MeSH terms: Water Purification
  11. Selambakkannu, S., Bakar, K.A., Ting, T.M., Sharif, J., Dahlan, K.Z.
    MyJurnal
    This paper studies the use of gamma irradiation for textile waste water treatment. Prior to irradiation, the raw wastewa ter was diluted using tap water to targeted concentration of COD 400 mg/l. The sample was irradiated at selected dose between the ranges of 2kGy to 100kGy. The results showed that Irradiation was effective in removing the highly colored refractory organic pollutants. The COD removal at lowest dose, 2kGy is about 310 mg/l. Meanwhile, at highest dose, 1 00kGy the COD reduced to 100mg/l. The degree of removal influenced by the dose introduced during the treatment pro cess. As the dose increased, higher removal of organic pollutant was recorded. On the other hand, other properties of t he wastewater such as pH, turbidity, suspended solid, BOD and color shows tremendous changes as the dose increases. This shows the concentration of pollutants and dose of irradiation applied are directly proportional to each other.
    Matched MeSH terms: Water Purification
  12. Das R, Hamid SB, Annuar MS
    Sci Rep, 2016 10 10;6:33572.
    PMID: 27721429 DOI: 10.1038/srep33572
    The present study reported for the first time covalent immobilization of protocatechuate 3,4-dioxygenase (3,4-POD) onto functionalized multi-walled carbon nanotubes (F-MWCNT) for degrading the toxic 3,4-dihydroxybenzoic acid (3,4-DHBA) pollutant in water. The F-MWCNTs had a maximum 3,4-POD loading of 1060 μg/mg. Immobilized 3,4 POD had 44% of relative structural changes to its free configurations. Nevertheless, >90% of relative activity and about 50% of catalytic efficiency were retained to the free enzyme. Immobilized 3,4-POD demonstrated higher alkaline stability and thermostability than the free 3,4-POD. The free and immobilized 3,4-POD lost 82% and 66% of relative activities, respectively after 180 min of incubations at 90 °C. Excellent shelf-life was observed for the immobilized 3,4-POD with residual activity of 56% compared with 41% and 39% of the free 3,4-POD at 4 °C and 25 °C over 30 days storage. Immobilized 3,4-POD showed >60% of catalytic activity retention even after ten-cycle uses, defraying the expenses of free 3,4-POD productions for long term uses. Finally, the immobilized 3,4-POD removed 71% of 3,4-DHBA from water in <4 h, paving its future application for water purification with reduced costs and time.
    Matched MeSH terms: Water Purification
  13. Kutty SRM, Almahbashi NMY, Nazrin AAM, Malek MA, Noor A, Baloo L, et al.
    Heliyon, 2019 Oct;5(10):e02439.
    PMID: 31667371 DOI: 10.1016/j.heliyon.2019.e02439
    Treated palm oil mill effluents (POME) is of great concern as it still has colour from its dissolved organics which may pollute receiving water bodies. In this study, the removal of colour from treated palm oil mill effluent were investigated through adsorption studies using carbon derived from wastewater sludge (WSC). Sludge from activated sludge plants were dried and processed to produce WSC. In this study, three different bed depths of WSC were used: 5 cm, 10 cm, and 15 cm. For each bed depth, the flowrate was varied at three different values: 100 mL/hr, 50 mL/hr and 25 mL/hr. It was found that at bed depth of 5 cm, the breakthrough curves were occurred at 360 min, 150 min and 15 min for flowrates of 25, 50 and 100 mL/hr respectively. It was observed that at a particular depth the exhaustion time for column reduced as flow rate increases. Kinetic models, Adams-Bohart and Yoon-Nelson were used to analyze the performance of the adsorption. It was found that rate constant for Adams Bohart model decreased with the increase in bed depth. Adsorption capacity obtained from Adams-Bohart model ranged from 2676.19 mg/L up to 8938.78 mg/L. The maximum adsorption capacity increases with smaller bed depth. For Yoon-Nelson model, the rate constant decreases with increase in bed depth. The required time for 50% breakthrough obtained from the models ranged from 17.01 to 104.17 minutes for all three bed depths. The reduction of colour was found to be effective at all bed depths. The experimental data was best described by both models as with higher values of correlation coefficient (R2).
    Matched MeSH terms: Water Purification
  14. Athirah Othman, Johan Sohaili, Nur Sumaiyyah Supian
    MyJurnal
    This review is aimed to present an in-depth review of several methodologies on magnetic
    water treatment (MWT) that are employed as scale treatment in water pipeline and to
    critically discuss each method in order to determine the best outcome of MWT. The
    magnetically assisted water in pipeline in various applications are presented, argued and
    best variables are listed according to the performance of each MWT. The advantages and
    limitations of MWT are discussed and the main outcome from the review summarize the
    best method in MWT, especially in effectiveness of treating scale in terms of sustained
    environment benefits. Magnetic field application in water treatment has the potential to
    improve the water pipeline performance and lifetime. The application is also significant in
    controlling the growth of scale in upcoming system. Both of these benefits lead to healthier
    water treatment, increasing and maintaining the lifetime and performance of water system.
    Matched MeSH terms: Water Purification
  15. Li J, Shimizu K, Akasako H, Lu Z, Akiyama S, Goto M, et al.
    Bioresour Technol, 2015 Jan;175:463-72.
    PMID: 25459856 DOI: 10.1016/j.biortech.2014.10.047
    This study revealed the biotic and abiotic parameters driving the variations in microcystins (MCs) biodegradability of a practical biological treatment facility (BTF). Results showed that similar trends of seasonal variation were seen for microcystin-LR (MCLR) biodegradability of biofilms on the BTF and indigenous MCLR-degrader population, where both peaks co-occurred in October, following the peaks of natural MCLR concentration and water temperature observed in August. The lag period might be required for accumulation of MCLR-degraders and MCLR-degrading enzyme activity. The MCLR-degrader population was correlated to temperature, MCLR and chlorophyll-a concentration in water where the biofilms submerged, indicating that these abiotic and biotic parameters exerted direct and/or indirect influences on seasonal variation in MCLR-biodegradability. In comparison, no effect of other co-existing MCs on biodegradation of one MC was observed. However, proliferation of MC-degraders along biodegradation processes positively responded to total amount of MCs, suggesting that multiple MCs contributed additively to MC-degrader proliferation.
    Matched MeSH terms: Water Purification/methods*
  16. Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, et al.
    Carbohydr Polym, 2014 Nov 26;113:115-30.
    PMID: 25256466 DOI: 10.1016/j.carbpol.2014.07.007
    Chitosan based adsorbents have received a lot of attention for adsorption of dyes. Various modifications of this polysaccharide have been investigated to improve the adsorption properties as well as mechanical and physical characteristics of chitosan. This review paper discusses major research topics related to chitosan and its derivatives for application in the removal of dyes from water. Modification of chitosan changes the original properties of this material so that it can be more suitable for adsorption of different types of dye. Many chitosan derivatives have been obtained through chemical and physical modifications of raw chitosan that include cross-linking, grafting and impregnation of the chitosan backbone. Better understanding of these varieties and their affinity toward different types of dye can help future research to be properly oriented to address knowledge gaps in this area. This review provides better opportunity for researchers to better explore the potential of chitosan-derived adsorbents for removal of a great variety of dyes.
    Matched MeSH terms: Water Purification*
  17. Vincent L, Michel L, Catherine C, Pauline R
    Water Sci Technol, 2014;70(5):787-94.
    PMID: 25225924 DOI: 10.2166/wst.2014.290
    Finding alternative resources to secure or increase water availability is a key issue in most urban areas. This makes the research of alternative and local water resources of increasing importance. In the context of political tension with its main water provider (Malaysia), Singapore has been implementing a comprehensive water policy for some decades, which relies on water demand management and local water resource mobilisation in order to reach water self-sufficiency by 2060. The production of water from alternative resources through seawater desalination or water reclamation implies energy consumptive technologies such as reverse osmosis. In the context of increasing energy costs and high primary energy dependency, this water self-sufficiency objective is likely to be an important challenge for Singapore. The aim of this paper is to quantify the long-term impact of Singapore's water policy on the national electricity bill and to investigate the impact of Singapore's projects to reduce its water energy footprint. We estimate that 2.0% of the Singaporean electricity demand is already dedicated to water and wastewater treatment processes. If its water-energy footprint dramatically increases in the coming decades, ambitious research projects may buffer the energy cost of water self-sufficiency.
    Matched MeSH terms: Water Purification/economics*
  18. Al-Baldawi IA, Sheikh Abdullah SR, Abu Hasan H, Suja F, Anuar N, Mushrifah I
    J Environ Manage, 2014 Jul 1;140:152-9.
    PMID: 24762527 DOI: 10.1016/j.jenvman.2014.03.007
    This study investigated the optimum conditions for total petroleum hydrocarbon (TPH) removal from diesel-contaminated water using phytoremediation treatment with Scirpus grossus. In addition, TPH removal from sand was adopted as a second response. The optimum conditions for maximum TPH removal were determined through a Box-Behnken Design. Three operational variables, i.e. diesel concentration (0.1, 0.175, 0.25% Vdiesel/Vwater), aeration rate (0, 1 and 2 L/min) and retention time (14, 43 and 72 days), were investigated by setting TPH removal and diesel concentration as the maximum, retention time within the given range, and aeration rate as the minimum. The optimum conditions were found to be a diesel concentration of 0.25% (Vdiesel/Vwater), a retention time of 63 days and no aeration with an estimated maximum TPH removal from water and sand of 76.3 and 56.5%, respectively. From a validation test of the optimum conditions, it was found that the maximum TPH removal from contaminated water and sand was 72.5 and 59%, respectively, which was a 5 and 4.4% deviation from the values given by the Box-Behnken Design, providing evidence that S. grossus is a Malaysian native plant that can be used to remediate wastewater containing hydrocarbons.
    Matched MeSH terms: Water Purification/methods
  19. Al-Baldawi IA, Sheikh Abdullah SR, Anuar N, Suja F, Idris M
    Water Sci Technol, 2013;68(10):2271-8.
    PMID: 24292478 DOI: 10.2166/wst.2013.484
    One of the appropriate development technology options for the treatment of wastewater contaminated with diesel is constructed wetlands (CWs). Throughout 72 days of exposure, sampling was carried out for monitoring of physical parameters, plant growth and the efficiency of total petroleum hydrocarbon (TPH) removal, as an indication for diesel contamination, to assess the pilot-scale performance. Four pilot CWs with a horizontal sub-surface flow system were applied using the bulrush of Scirpus grossus. The CWs were loaded with different diesel concentrations of 0, 0.1, 0.2 and 0.25% (Vdiesel/Vwater). The TPH removal efficiencies were 82, 71, and 67% at the end of 72 days for diesel concentrations of 0.1, 0.2, and 0.25% respectively. In addition, the high removal efficiency of total suspended solids and chemical oxygen demand (COD) were 100 and 75.4% respectively, for a diesel concentration of 0.1%. It was concluded that S. grossus is a potential plant that can be used in a well-operated CW for restoring 0.1% diesel-contaminated water.
    Matched MeSH terms: Water Purification*
  20. Herawan SG, Ahmad MA, Putra A, Yusof AA
    ScientificWorldJournal, 2013;2013:545948.
    PMID: 24027443 DOI: 10.1155/2013/545948
    Activated carbons are regularly used the treatment of dye wastewater. They can be produced from various organics materials having high level of carbon content. In this study, a novel Pinang frond activated carbon (PFAC) was produced at various CO₂ flow rates in the range of 150-600 mL/min at activation temperature of 800°C for 3 hours. The optimum PFAC sample is found on CO₂ flow rate of 300 mL/min which gives the highest BET surface area and pore volume of 958 m²/g and 0.5469 mL/g, respectively. This sample shows well-developed pore structure with high fixed carbon content of 79.74%. The removal of methylene blue (MB) by 95.8% for initial MB concentration of 50 mg/L and 72.6% for 500 mg/L is achieved via this sample. The PFAC is thus identified to be a suitable adsorbent for removing MB from aqueous solution.
    Matched MeSH terms: Water Purification/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links