Displaying publications 81 - 100 of 159 in total

Abstract:
Sort:
  1. Gee HY, Sadowski CE, Aggarwal PK, Porath JD, Yakulov TA, Schueler M, et al.
    Nat Commun, 2016 Feb 24;7:10822.
    PMID: 26905694 DOI: 10.1038/ncomms10822
    Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice induces abnormal glomerular filtration barrier development, leading to podocyte foot process effacement. Knockdown of Fat1 in renal tubular cells reduces migration, decreases active RAC1 and CDC42, and induces defects in lumen formation. Knockdown of fat1 in zebrafish causes pronephric cysts, which is partially rescued by RAC1/CDC42 activators, confirming a role of the two small GTPases in the pathogenesis. These findings provide new insights into the pathogenesis of SRNS and tubulopathy, linking FAT1 and RAC1/CDC42 to podocyte and tubular cell function.
    Matched MeSH terms: Zebrafish; Zebrafish Proteins/genetics*
  2. Ogawa S, Ramadasan PN, Anthonysamy R, Parhar IS
    PMID: 33763023 DOI: 10.3389/fendo.2020.534343
    Substance P (SP) and neurokinin A (NKA), encoded by TAC1/Tac1 gene are members of the tachykinin family, which exert their neuromodulatory roles in vertebrate reproduction. In mammals, SP and NKA have been shown to regulate gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion via kisspeptin neurons. On the other hand, the role of SP/NKA in the regulation of reproduction in non-mammalian vertebrates is not well known. In the present study, we first localized expression of tac1 mRNA in the brain of male and female zebrafish, Danio rerio. Next, using an antibody against zebrafish tachykinin1 (Tac1), we examined the neural association of SP/NKA neural processes with GnRH3 neurons, and with kisspeptin (kiss2) neurons, in the brains of male and female zebrafish. In situ hybridization showed an apparent male-dominant tac1 expression in the ventral telencephalic area, the anterior and posterior parts of the parvocellular preoptic nucleus, and the suprachiasmatic nucleus. On the other hand, there was female-dominant tac1 expression in the ventral periventricular hypothalamus. Confocal images of double-labeled zebrafish Tac1 and GnRH3 showed associations between Tac1-immunoreactive processes and GnRH3 neurons in the ventral telencephalic area. In contrast, there was no apparent proximity of Tac1 processes to kiss2 mRNA-expressing neurons in the hypothalamus. Lastly, to elucidate possible direct action of SP/NKA on GnRH3 or Kiss2 neurons, expression of SP/NKA receptor, tacr1a mRNA was examined in regions containing GnRH3 or Kiss2 neurons by in situ hybridization. Expression of tacr1a mRNA was seen in several brain regions including the olfactory bulb, preoptic area and hypothalamus, where GnRH3 and Kiss2 cells are present. These results suggest that unlike in mammals, Tac1 may be involved in male reproductive functions via direct action on GnRH3 neurons but independent of kisspeptin in the zebrafish.
    Matched MeSH terms: Zebrafish; Zebrafish Proteins/metabolism
  3. Hang CY, Moriya S, Ogawa S, Parhar IS
    PLoS One, 2016;11(10):e0165535.
    PMID: 27792783 DOI: 10.1371/journal.pone.0165535
    Non-rod non-cone photopigments in the eyes and the brain can directly mediate non-visual functions of light in non-mammals. This was supported by our recent findings on vertebrate ancient long (VAL)-opsin photopigments encoded by the val-opsinA (valopa) and val-opsinB (valopb) genes in zebrafish. However, the physiological functions of valop isoforms remain unknown. Here, we generated valop-mutant zebrafish using CRISPR/Cas genome editing, and examined the phenotypes of loss-of-function mutants. F0 mosaic mutations and germline transmission were confirmed via targeted insertions and/or deletions in the valopa or valopb gene in F1 mutants. Based on in silico analysis, frameshift mutations converted VAL-opsin proteins to non-functional truncated forms with pre-mature stop codons. Most F1 eggs or embryos from F0 female valopa/b mutants showed either no or only partial chorion elevation, and the eggs or embryos died within 26 hour-post-fertilization. However, most F1 embryos from F0 male valopa mutant developed but hatched late compared to wild-type embryos, which hatched at 4 day-post-fertilization. Late-hatched F1 offspring included wild-type and mutants, indicating the parental effects of valop knockout. This study shows valop gene knockout affects chorion formation and embryonic hatching in the zebrafish.
    Matched MeSH terms: Zebrafish/embryology*; Zebrafish/genetics*
  4. Loganathan K, Moriya S, Parhar IS
    Zoolog Sci, 2019 04 01;36(2):167-171.
    PMID: 31120653 DOI: 10.2108/zs180111
    The two-pore domain potassium ion (K + ) channel-related K + (TREK) channel and melatonin receptors play roles in the regulation of reproduction in zebrafish. Since reproduction is regulated by diurnal rhythms, the TREK family and melatonin receptors may exhibit diurnal rhythms in expression. In this study, we aimed to investigate diurnal variations of the gene expressions of TREK family and melatonin receptors and their associations with kisspeptin and gonadotrophin-releasing hormone (GnRH). Diurnal variations of trek1b, trek2a, trek2b, mt1, mt2, mel1a, kiss2 and gnrh3 expressions were examined by real-time PCR. For reproduction-related genes, kiss2 and gnrh3 exhibited diurnal rhythms. trek2a revealed a diurnal rhythm in the TREK family. mt2 and mel1c exhibited diurnal rhythms in the melatonin receptors. Since Trek2a regulates gnrh3 expression, the diurnal rhythm of gnrh3 expression suggests to be regulated by the diurnal rhythm of trek2a expression.
    Matched MeSH terms: Zebrafish/genetics; Zebrafish/metabolism*
  5. Fakhlaei R, Selamat J, Razis AFA, Sukor R, Ahmad S, Amani Babadi A, et al.
    Molecules, 2021 Oct 15;26(20).
    PMID: 34684803 DOI: 10.3390/molecules26206222
    Honey is prone to be adulterated through mixing with sugars, cheap and low-quality honey, and other adulterants. Consumption of adulterated honey may cause several health issues such as weight gain, diabetes, and liver and kidney dysfunction. Therefore, studying the impact of consumption of adulterated honey on consumers is critical since there is a lack of study in this field. Hence, the aims of this paper were: (1) to determine the lethal concentration (LC50) of adulterated honey using zebrafish embryo, (2) to elucidate toxicology of selected adulterated honey based on lethal dose (LD50) using adult zebrafish, (3) to determine the effects of adulterated honey on histological changes of zebrafish, and (4) to screen the metabolites profile of adulterated honey by using zebrafish blood serum. The LC50 of Heterotrigona itama honey (acacia honey) and its sugar adulterants (light corn sugar, cane sugar, inverted sugar, and palm sugar in the proportion of 1-3% (w/w) from the total volume) was determined by the toxicological assessment of honey samples on zebrafish embryos (different exposure concentrations in 24, 48, 72, and 96 h postfertilization (hpf)). Pure H. itama honey represents the LC50 of 34.40 ± 1.84 (mg/mL) at 96 hpf, while the inverted sugar represents the lowest LC50 (5.03 ± 0.92 mg/mL) among sugar adulterants. The highest concentration (3%) of sugar adulterants were used to study the toxicology of adulterated honey using adult zebrafish in terms of acute, prolong-acute, and sub-acute tests. The results of the LD50 from the sub-acute toxicity test of pure H. itama honey was 2.33 ± 0.24 (mg/mL). The histological studies of internal organs showed a lesion in the liver, kidney, and spleen of adulterated treated-honey groups compared to the control group. Furthermore, the LC-MS/MS results revealed three endogenous metabolites in both the pure and adulterated honey treated groups, as follows: (1) S-Cysteinosuccinic acid, (2) 2,3-Diphosphoglyceric acid, and (3) Cysteinyl-Tyrosine. The results of this study demonstrated that adulterated honey caused mortality, which contributes to higher toxicity, and also suggested that the zebrafish toxicity test could be a standard method for assessing the potential toxicity of other hazardous food additives. The information gained from this research will permit an evaluation of the potential risk associated with the consumption of adulterated compared to pure honey.
    Matched MeSH terms: Zebrafish/blood; Zebrafish/embryology
  6. Reijnders MRF, Ansor NM, Kousi M, Yue WW, Tan PL, Clarkson K, et al.
    Am J Hum Genet, 2017 Sep 07;101(3):466-477.
    PMID: 28886345 DOI: 10.1016/j.ajhg.2017.08.007
    RAC1 is a widely studied Rho GTPase, a class of molecules that modulate numerous cellular functions essential for normal development. RAC1 is highly conserved across species and is under strict mutational constraint. We report seven individuals with distinct de novo missense RAC1 mutations and varying degrees of developmental delay, brain malformations, and additional phenotypes. Four individuals, each harboring one of c.53G>A (p.Cys18Tyr), c.116A>G (p.Asn39Ser), c.218C>T (p.Pro73Leu), and c.470G>A (p.Cys157Tyr) variants, were microcephalic, with head circumferences between -2.5 to -5 SD. In contrast, two individuals with c.151G>A (p.Val51Met) and c.151G>C (p.Val51Leu) alleles were macrocephalic with head circumferences of +4.16 and +4.5 SD. One individual harboring a c.190T>G (p.Tyr64Asp) allele had head circumference in the normal range. Collectively, we observed an extraordinary spread of ∼10 SD of head circumferences orchestrated by distinct mutations in the same gene. In silico modeling, mouse fibroblasts spreading assays, and in vivo overexpression assays using zebrafish as a surrogate model demonstrated that the p.Cys18Tyr and p.Asn39Ser RAC1 variants function as dominant-negative alleles and result in microcephaly, reduced neuronal proliferation, and cerebellar abnormalities in vivo. Conversely, the p.Tyr64Asp substitution is constitutively active. The remaining mutations are probably weakly dominant negative or their effects are context dependent. These findings highlight the importance of RAC1 in neuronal development. Along with TRIO and HACE1, a sub-category of rare developmental disorders is emerging with RAC1 as the central player. We show that ultra-rare disorders caused by private, non-recurrent missense mutations that result in varying phenotypes are challenging to dissect, but can be delineated through focused international collaboration.
    Matched MeSH terms: Zebrafish/genetics; Zebrafish/growth & development
  7. Tay SS, Kuah MK, Shu-Chien AC
    Sci Rep, 2018 03 01;8(1):3874.
    PMID: 29497119 DOI: 10.1038/s41598-018-22157-4
    The front-end desaturases (Fads) are rate-limiting enzymes responsible for production of long-chain polyunsaturated fatty acids (LC-PUFA). The full spectrum of the transcriptional regulation of fads is still incomplete, as cloning of fads promoter is limited to a few species. Here, we described the cloning and characterisation of the zebrafish fads2 promoter. Using 5'-deletion and mutation analysis on this promoter, we identified a specific region containing the sterol regulatory element (SRE) which is responsible for the activation of the fads2 promoter. In tandem, two conserved CCAAT boxes were also present adjacent to the SRE and mutation of either of these binding sites attenuates the transcriptional activation of the fads2 promoter. An in vivo analysis employing GFP reporter gene in transiently transfected zebrafish embryos showed that this 1754 bp upstream region of the fads2 gene specifically directs GFP expression in the yolk syncytial layer (YSL) region. This indicates a role for LC-PUFA in the transport of yolk lipids through this tissue layer. In conclusion, besides identifying novel core elements for transcriptional activation in zebrafish fads2 promoter, we also reveal a potential role for fads2 or LC-PUFA in YSL during development.
    Matched MeSH terms: Zebrafish/embryology*; Zebrafish/genetics*
  8. Loganathan K, Moriya S, Parhar IS
    Biochem Biophys Res Commun, 2018 02 12;496(3):927-933.
    PMID: 29395088 DOI: 10.1016/j.bbrc.2018.01.117
    Gonadotrophin-releasing hormone (GnRH) expression is associated with the two-pore domain potassium ion (K+) channel-related K+ (TREK) channel trek2a expression and melatonin levels. We aimed to investigate correlation of trek2a expression with gnrh3 expression, and regulatory mechanisms of trek2a expression by the melatonin receptor Mt1 and α2-adrenoceptor which are regulated by melatonin. trek2a specific siRNA, Mt1 antagonist luzindole and α2-adrenoceptor antagonist prazosin were administered into the adult zebrafish brain and gene expressions were examined by real-time PCR. trek2a specific siRNA administration significantly reduced expression levels of trek2a, gnrh3 and mt1. Luzindole administration suppressed trek2a and gnrh3 expressions. Prazosin administration reduced trek2a and gnrh3 expressions. It is suggested that Trek2a regulates gnrh3 expression under the control of Mt1 and α2-adrenoceptor.
    Matched MeSH terms: Zebrafish; Zebrafish Proteins/metabolism*
  9. Parhar IS, Ogawa S, Ubuka T
    PMID: 27065948 DOI: 10.3389/fendo.2016.00028
    Social behaviors are key components of reproduction, because they are essential for successful fertilization. Social behaviors, such as courtship, mating, and aggression, are strongly associated with sex steroids, such as testosterone, estradiol, and progesterone. Secretion of sex steroids from the gonads is regulated by the hypothalamus-pituitary-gonadal (HPG) axis in vertebrates. Gonadotropin-releasing hormone (GnRH) is a pivotal hypothalamic neuropeptide that stimulates gonadotropin release from the pituitary. In recent years, the role of neuropeptides containing the C-terminal Arg-Phe-NH2 (RFamide peptides) has been emphasized in vertebrate reproduction. In particular, two key RFamide peptides, kisspeptin and gonadotropin-inhibitory hormone (GnIH), emerged as critical accelerator and suppressor of gonadotropin secretion. Kisspeptin stimulates GnRH release by directly acting on GnRH neurons, whereas GnIH inhibits gonadotropin release by inhibiting kisspeptin, GnRH neurons, or pituitary gonadotropes. These neuropeptides can regulate social behavior by regulating the HPG axis. However, distribution of neuronal fibers of GnRH, kisspeptin, and GnIH neurons is not limited within the hypothalamus, and the existence of extrahypothalamic neuronal fibers suggests direct control of social behavior within the brain. It has traditionally been shown that central administration of GnRH can stimulate female sexual behavior in rats. Recently, it was shown that Kiss1, one of the paralogs of kisspeptin peptide family, regulates fear responses in zebrafish and GnIH inhibits sociosexual behavior in birds. Here, we highlight recent findings regarding the role of GnRH, kisspeptin, and GnIH in the regulation of social behaviors in fish, birds, and mammals and discuss their importance in future biological and biomedical research.
    Matched MeSH terms: Zebrafish
  10. Hayati F, Chabib L, Fauzi IS, Awaluddin R, Sumayya, Faizah WS, et al.
    J Pharm Bioallied Sci, 2020 10 08;12(4):457-461.
    PMID: 33679093 DOI: 10.4103/jpbs.JPBS_297_19
    Introduction: Pegagan is a traditional medicinal plant with three major bioactive properties, triterpenoid, steroids, and saponin. It has the properties of antioxidant, antistress, and wound healing. Pegagan extract is prepared in self-nanoemulsifying drug delivery systems (SNEDDS) to overcome the problem of low water-solubility level.

    Objectives: This study aimed to observe the effect of pegagan ethanolic extract SNEDDS on the development of zebrafish embryos.

    Materials and Methods: This study used 12 sets of zebrafish embryos presented in five sets of extract SNEDDS with different concentrations, that is, 20, 10, 5, 2.5, and 1.25 μg, five sets of SNEDDS without extract with different concentrations, that is, 20, 10, 5, 2.5, and 1.25 μg, a set of positive control (3.4-DCA 4 mg/L) with one control set (diluted with water), and a negative control (SNEDDS without extract). The procedure was conducted for 96 h with observations every 24 h. The parameters observed were embryonic coagulation, formation of somites, detachment of tail bud from the yolk, and abnormality of embryo.

    Results: The results showed that in 96 h the 20ppm concentration caused 100% mortality. Embryo abnormality appeared as coagulation of embryo, somite malformation, and abnormal tail.

    Discussion: There is a correlation between the concentration of SNEDDS and the incidence of embryo coagulation. The malformation in the group of pegagan extract SNEDDS is characterized by cardiac edema, somite malformation, and abnormal tail.

    Conclusion: Pegagan ethanolic extract SNEDDS of 20ppm can inhibit the development of zebrafish embryos.

    Matched MeSH terms: Zebrafish
  11. Ahmad Ashraful Hadi Abdul Ghafor, Nurhuda Elias, Suhaili Shams, Faizah Md Yasin, Sarchio, Seri Narti Edayu
    MyJurnal
    Gallic acid (GA) is a phenolic compound found in almost all plants and has been reported to possess powerful health benefits such as anti-oxidant, anti-inflammatory, anti-cancer, and anti-diabetic properties. However, GA suffers a short half-life when administered in vivo. Recent studies have employed graphene oxide (GO), a biocompatible and cost-effective graphene derivative, as a nanocarrier for GA. However, the toxicity effect of this formulated nano-compound has not been fully studied. Thus, the present study aims to evaluate the toxicity and teratogenicity of GA loaded GO (GAGO) against zebrafish embryogenesis to further advance the development of GA as a therapeutic agent. GAGO was exposed to zebrafish embryos (n ≥ 10; 24hr post fertilization (hpf)) at different concentrations (0-500 μg/ml). The development of zebrafish was observed and recorded twice daily for four days. The toxicity of pure GO and GA was also observed at similar concentrations. Distilled water was used as control throughout the experiment. A significantly high mortality rate, delayed hatching rate and low heartbeat were recorded in embryos exposed to GO at concentrations of ≥ 150 μg/ml at 48 hr (p
    Matched MeSH terms: Zebrafish
  12. Chung YS, Choo BKM, Ahmed PK, Othman I, Shaikh MF
    Biomedicines, 2020 Jul 02;8(7).
    PMID: 32630817 DOI: 10.3390/biomedicines8070191
    The anticonvulsive potential of proteins extracted from Orthosiphon stamineus leaves (OSLP) has never been elucidated in zebrafish (Danio rerio). This study thus aims to elucidate the anticonvulsive potential of OSLP in pentylenetetrazol (PTZ)-induced seizure model. Physical changes (seizure score and seizure onset time, behavior, locomotor) and neurotransmitter analysis were elucidated to assess the pharmacological activity. The protective mechanism of OSLP on brain was also studied using mass spectrometry-based label-free proteomic quantification (LFQ) and bioinformatics. OSLP was found to be safe up to 800 µg/kg and pre-treatment with OSLP (800 µg/kg, i.p., 30 min) decreased the frequency of convulsive activities (lower seizure score and prolonged seizure onset time), improved locomotor behaviors (reduced erratic swimming movements and bottom-dwelling habit), and lowered the excitatory neurotransmitter (glutamate). Pre-treatment with OSLP increased protein Complexin 2 (Cplx 2) expression in the zebrafish brain. Cplx2 is an important regulator in the trans-SNARE complex which is required during the vesicle priming phase in the calcium-dependent synaptic vesicle exocytosis. Findings in this study collectively suggests that OSLP could be regulating the release of neurotransmitters via calcium-dependent synaptic vesicle exocytosis mediated by the "Synaptic Vesicle Cycle" pathway. OSLP's anticonvulsive actions could be acting differently from diazepam (DZP) and with that, it might not produce the similar cognitive insults such as DZP.
    Matched MeSH terms: Zebrafish
  13. Li G, Tang H, Chen Y, Yin Y, Ogawa S, Liu M, et al.
    Mol Cell Endocrinol, 2018 02 05;461:1-11.
    PMID: 28801227 DOI: 10.1016/j.mce.2017.08.003
    The LHb expression is up-regulated during puberty in female zebrafish. However, the molecular mechanism underlying how LHb expression is regulated during puberty remains largely unknown. In this study, we found that the mRNA expression levels of lhb, fshb and cyp19a1b were up-regulated along with the puberty onset in zebrafish. Among the three nuclear estrogen receptors (nERs), the esr2b is the only type whose expression is significantly up-regulated during puberty onset in the pituitary. However, in situ hybridization results revealed that lhb mRNA was colocalized with esr1 and esr2a but not esr2b. Exposure to estradiol (E2) significantly stimulates LHb expression in both wild-type and kiss1-/-;kiss2-/-;gnrh3-/- triple knockout pubertal zebrafish. Moreover, exposure of cultured pituitary cells to E2 increased the LHb expression, indicating that the estrogenic effect on LHb expression could be acted at the pituitary level. Finally, we cloned and analyzed the promoter of lhb by luciferase assay. Our results indicated that the E2 responsive regions of lhb promoter for ERα and ERβ2 are identical, suggesting that ERα and ERβ2 could bind to the same half ERE region of the promoter of lhb, exhibiting a classical ERE-dependent pathway. In summary, we demonstrate that E2 could directly act on the pituitary level to stimulate LHb transcription during puberty in zebrafish.
    Matched MeSH terms: Zebrafish/metabolism*; Zebrafish Proteins/metabolism
  14. Nathan FM, Ogawa S, Parhar IS
    J Neurochem, 2015 Nov;135(4):814-29.
    PMID: 26250886 DOI: 10.1111/jnc.13273
    The habenula, located on the dorsal thalamic surface, is an emotional and reward processing center. As in the mammalian brain, the zebrafish habenula is divided into dorsal (dHb) and ventral (vHb) subdivisions that project to the interpeduncular nucleus and median raphe (MR) respectively. Previously, we have shown that kisspeptin 1 (Kiss1) expressing in the vHb, regulates the serotonin (5-HT) system in the MR. However, the connectivity between the Kiss1 neurons and the 5-HT system remains unknown. To resolve this issue, we generated a specific antibody against zebrafish Kiss1 receptor (Kiss-R1); using this primary antibody we found intense immunohistochemical labeling in the ventro-anterior corner of the MR (vaMR) but not in 5-HT neurons, suggesting the potential involvement of interneurons in 5-HT modulation by Kiss1. Double-fluorescence labeling showed that the majority of habenular Kiss1 neurons are glutamatergic. In the MR region, Kiss1 fibers were mainly seen in close association with glutamatergic neurons and only scarcely within GABAergic and 5-HT neurons. Our findings indicate that the habenular Kiss1 neurons potentially modulate the 5-HT system primarily through glutamatergic neurotransmission via as yet uncharacterized interneurons. The neuropeptide kisspeptin (Kiss1) play a key role in vertebrate reproduction. We have previously shown modulatory role of habenular Kiss1 in the raphe serotonin (5-HT) systems. This study proposed that the habenular Kiss1 neurons modulate the 5-HT system primarily through glutamatergic neurotransmission, which provides an important insight for understanding of the modulation of 5-HT system by the habenula-raphe pathway.
    Matched MeSH terms: Zebrafish; Zebrafish Proteins/genetics; Zebrafish Proteins/metabolism*
  15. Ikram Ismail, Siti-Ariza Aripin
    MyJurnal
    Danio rerio or commonly known as zebrafish are a very popular fish among scientists and also a well-known vertebrate model species widely used in research. Zebrafish, are also a popular species among aquarists and have been put in aquariums all around the world as ornamental fish. The acid rain phenomenon has lowered the pH level of the wild habitat of zebrafish by shifting it to a more acidic pH level. This study was carried out to observe the effect of low pH level on the reproductive performance of zebrafish. The zebrafish were quarantined for a week to make sure they were healthy to be used in the experiment. The zebrafish were reared continuously for 14 days in three different pH treatments T1 (pH 2-4), T2 (pH 4-6), T3 (pH 6-8)). T3 (pH 6-8) was used as the control treatment. Hydrochloric acid (HCl) was used to control the pH level of treatments T1 (pH 2-4), T2 (pH 4-6), T3 (pH 6-8) with three replicates of each treatment. The male chasing female frequency was significant (p: 0.0001) and the data showed the highest frequency (2568.000±140.6272) at treatment 3 (pH 6-8). For the spawning frequency of zebrafish, treatment 3 (pH 6-8) showed the highest value (4.000±0.5774) followed by treatment 2 and treatment 1 and the data was significant (p: 0.0004). The fertilisation rate of the zebrafish was significant (p: 0.0001) and the highest was shown at T2 (pH 4-6) with 89.8018±0.3782, followed by T3 and treatment T1. For the hatching rate of the zebrafish, the data collected were significant (p: 0.0002) and the highest value of 2.9350±0.4070 was shown at T3 (pH 6-8), followed by T2 (pH 4-6) and T1 (pH 2-4). The overall result showed that pH 2-4 had the worst effect on the reproductive performance of zebrafish. Therefore, low pH has a significant effect on reducing the reproductive performance of zebrafish. The local fish population can be affected by the decrease of pH level due to acid rains and chemical waste pollution.
    Matched MeSH terms: Zebrafish
  16. Murugan K, Anitha J, Dinesh D, Suresh U, Rajaganesh R, Chandramohan B, et al.
    Ecotoxicol Environ Saf, 2016 Oct;132:318-28.
    PMID: 27344400 DOI: 10.1016/j.ecoenv.2016.06.021
    Mosquitoes are arthropods of huge medical and veterinary relevance, since they vector pathogens and parasites of public health importance, including malaria, dengue and Zika virus. Currently, nanotechnology is considered a potential eco-friendly approach in mosquito control research. We proposed a novel method of biofabrication of silver nanoparticles (AgNP) using chitosan (Ch) from crab shells. Ch-AgNP nanocomposite was characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi obtaining LC50 ranging from 3.18 ppm (I) to 6.54 ppm (pupae). The antibacterial properties of Ch-AgNP were proved against Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi, while no growth inhibition was reported in assays conducted on Proteus vulgaris. Concerning non-target effects, in standard laboratory considtions the predation efficiency of Danio rerio zebrafishes was 68.8% and 61.6% against I and II instar larvae of A. stephensi, respectively. In a Ch-AgNP-contaminated environment, fish predation was boosted to 89.5% and 77.3%, respectively. Quantitative analysis of antioxidant enzymes SOD, CAT and LPO from hepatopancreas of fresh water crabs Paratelphusa hydrodromous exposed for 16 days to a Ch-AgNP-contaminated aquatic environment were conducted. Notably, deleterious effects of Ch-AgNP contaminating aquatic enviroment on the non-target crab P. hydrodromous were observed, particularly when doses higher than 8-10ppm are tested. Overall, this research highlights the potential of Ch-AGNP for the development of newer control tools against young instar populations of malaria mosquitoes, also highlighting some risks concerned the employ of nanoparticles in aquatic environments.
    Matched MeSH terms: Zebrafish
  17. Raza H, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Hassan M, Abbas Q, et al.
    Bioorg Chem, 2020 01;94:103445.
    PMID: 31826809 DOI: 10.1016/j.bioorg.2019.103445
    In the current research work, different N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides have been synthesized according to the protocol described in scheme 1. The synthesis was initiated by reacting various substituted anilines (1a-e) with 4-chlorobutanoyl chloride (2) in aqueous basic medium to give various electrophiles, 4-chloro-N-(substituted-phenyl)butanamides (3a-e). These electrophiles were then coupled with 1-[(E)-3-phenyl-2-propenyl]piperazine (4) in polar aprotic medium to attain the targeted N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides (5a-e). The structures of all derivatives were identified and characterized by proton-nuclear magnetic resonance (1H NMR), carbon-nuclear magnetic resonance (13C NMR) and Infra-Red (IR) spectral data along with CHN analysis. The in vitro inhibitory potential of these butanamides was evaluated against Mushroom tyrosinase, whereby all compounds were found to be biologically active. Among them, 5b exhibited highest inhibitory potential with IC50 value of 0.013 ± 0.001 µM. The same compound 5b was also assayed through in vivo approach, and it was explored that it significantly reduced the pigments in zebrafish. The in silico studies were also in agreement with aforesaid results. Moreover, these molecules were profiled for their cytotoxicity through hemolytic activity, and it was found that except 5e, all other compounds showed minimal toxicity. The compound 5a also exhibited comparable results. Hence, some of these compounds might be worthy candidates for the formulation and development of depigmentation drugs with minimum side effects.
    Matched MeSH terms: Zebrafish
  18. Muthuraman A, Nafisa K, Sowmya MS, Arpitha BM, Choedon N, Sandy CD, et al.
    Life Sci, 2019 Mar 04.
    PMID: 30844374 DOI: 10.1016/j.lfs.2019.03.002
    BACKGROUND: Cigarette smoke is exogenous modifiable factors to changes the neurovascular complication. The chronic exposure of cigarette smoke enhances neurocognitive dysfunction.

    AIMS: The present study is focused on evaluating the role of ambrisentan (selective endothelin-A receptor antagonist) on cigarette smoke-induced cognitive impairment in Danio rerio.

    MAIN METHODS: The cognitive dysfunction was developed by cigarette smoke exposure (CSE; 10 min in 25 ml of CSE per day) for five days. The selective endothelin-A receptor antagonist i.e., ambrisentan (2.5 to 5 mg/kg; i.p. for five consecutive days) was used for testing of CSE induced cognitive dysfunction. In addition, treatment of reference drug i.e., donepezil (10 mg/kg; i.p. for five consecutive days) was used for this cognitive function study. The cognitive functions were assessed by light and dark chamber; color recognition; partition preference; horizontal compartment; and T-Maze tests. Further, the CSE induced biomarkers changes of the zebrafish brain samples were estimated.

    KEY FINDINGS: The treatment of ambrisentan showed a potential ameliorative effect against the CSE induced cognitive functions along with attenuation of biochemical changes. The results are comparable to donepezil-treated groups.

    SIGNIFICANCE: Therefore, ambrisentan can be considered for the attenuation of CSE induced impairment neurocognitive functions due to its reduction of free radical scavenging and neuroinflammatory actions as well as regulation of cholinergic neurotransmitter functions.

    Matched MeSH terms: Zebrafish
  19. Murugesu S, Khatib A, Ahmed QU, Ibrahim Z, Uzir BF, Benchoula K, et al.
    Toxicol Rep, 2019;6:1148-1154.
    PMID: 31993329 DOI: 10.1016/j.toxrep.2019.10.020
    Clinacanthus nutans, an herbal shrub belonging to the Acanthaceae family, is traditionally used as a functional food to treat various ailments in Malaysia and Indonesia. Although the polar fraction of this plant shows non-toxic effect, the toxicity of the non-polar extract is not reported so far. The present study aimed to assess the toxic effect and determine the lethal concentration of this non-polar fraction using zebrafish embryos. The n-hexane fraction was partitioned from the crude extract of C. nutans obtained using 80% methanolic solution. After spawning of the adult male and female zebrafish, the eggs were collected, transferred into a 96-well plate and incubated with the n-hexane fraction at concentrations of 15.63 μg/ml, 31.25 μg/ml, 62.5 μg/ml, 125 μg/ml, 250 μg/ml and 500 μg/ml in 2% DMSO. The survival and sublethal endpoint were assessed, the mortality and hatchability rates were calculated based on microscopic observation, while the heartbeat rate was measured using DanioScope software. The median lethal concentration (LC50) of the C. nutans n-hexane fraction, which was determined using probit analysis, was calculated to be 75.49 μg/mL, which is harmful. Moreover, gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of palmitic acid, phytol, hexadecanoic acid, 1-monopalmitin, stigmast-5-ene, pentadecanoic acid, heptadecanoic acid, 1-linolenoylglycerol and stigmasterol in the n-hexane fraction.
    Matched MeSH terms: Zebrafish
  20. Patsiou D, Del Rio-Cubilledo C, Catarino AI, Summers S, Mohd Fahmi A, Boyle D, et al.
    Sci Total Environ, 2020 May 01;715:136941.
    PMID: 32041050 DOI: 10.1016/j.scitotenv.2020.136941
    Lead-halide perovskite nanoparticles (NPs) are a new technology, and investigation of toxicity is of considerable importance due to the potential lead (Pb) release into the environment. The aim of the study was to investigate aqueous and dietary toxicity of Pb-halide perovskite NP and Pb in zebrafish Danio rerio. Perovskite NP toxicity was evaluated in zebrafish by mortality, gene expression, histopathology, and phylogenetic analysis of gut microbiota. Zebrafish larvae were exposed to five Pb-halide perovskite NPs in parallel with Pb(NO3)2 exposures, and zebrafish adults were exposed to the three perovskite NPs that caused the strongest effect and Pb(NO3)2. No median lethal concentration (LC50) was observed for zebrafish larvae exposed to up to 200 mg/L of perovskite NPs for 96 h. Mortality, metallothionein 2 (mt2) and δ-aminolevulinic acid dehydratase (ala-d) gene expression (24-h exposure) in zebrafish larvae after aqueous perovskite NPs exposures did not differ from total Pb concentration - response curves. The lack of differences in mortality and gene expression between perovskite NPs and soluble Pb after aqueous exposure suggest that toxicity from perovskite NPs can be attributed to bioavailable Pb rather than nano-specific effects. Induction of mt2 and reduction of ala-d expression levels in liver tissues showed Pb bioavailability after 2-d and 4-d dietary exposure to perovskite-spiked feeds. Changes in gut microbiota of adult zebrafish were detected after 14-d exposure to Pb-spiked food, but no changes were detected from perovskite-NP spiked food. The phylogenetic analysis identified different microbiome profiles of Pb-fed fish compared to perovskite-fed fish suggesting a different mechanism of toxicity. Exposure to Pb-halide perovskite NPs led to absorption of Pb likely from release of Pb ions rather than absorption of NPs. Pb-halide perovskite NPs can release bioavailable Pb and this needs to be considered during the development of this technology.
    Matched MeSH terms: Zebrafish
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links