Displaying publications 81 - 100 of 2759 in total

Abstract:
Sort:
  1. Jaradi H, Tay KH, Delilkan AE
    Med J Malaysia, 1989 Jun;44(2):143-6.
    PMID: 2626122
    The 'Priming principle' applied to non-depolarizing muscle relaxant atracurium was studied in 60 patients. This was a double blind study. The conditions observed for intubation were graded and the efficacy of priming dose of atracurium for shortening the onset time of intubation was studied. The patients were of ASA classification I and II and received standard premedication. The purpose of the study was to use the priming dose of atracurium to shorten the onset time of intubating dose of atracurium. This would be desirable in conditions requiring rapid intubation and in situations when the depolarizing muscle relaxant suxamethonium is contra-indicated. The results were statistically significant.
    Matched MeSH terms: Atracurium/administration & dosage*
  2. Latifah R, Razak IA
    J Pedod, 1989;13(4):323-7.
    PMID: 2638396
    The fluoride content of several brands of infant milk formulas were determined to approximate that available in the water used in its preparation. It was also found that the public water supply contains a mean fluoride content of 0.379 ppm. The daily fluoride intake derived from infant milk formulas in a fluoridated community is discussed in relation to the recommended dosage.
    Matched MeSH terms: Fluorides/administration & dosage
  3. Ong ML, Glew S
    Postgrad Med J, 1989 Nov;65(769):835-6.
    PMID: 2616419
    We describe a fatal case of paraquat poisoning as a result of per vaginal contact with the herbicide. Death occurred 18 days later from hepatic, renal and respiratory failure.
    Matched MeSH terms: Paraquat/administration & dosage
  4. Hassani A, Hussain SA, Abdullah N, Kamarudin S, Rosli R
    AAPS PharmSciTech, 2019 Jan 07;20(2):53.
    PMID: 30617521 DOI: 10.1208/s12249-018-1238-2
    Orotic acid (OA) nanoparticles were prepared using the freeze-drying method. The antihypertensive activity and antioxidant capacity of OA and orotic acid-loaded gum arabic nanoparticles (OAGANPs) were examined using the angiotensin-converting enzyme (ACE), 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide (NO), and β-carotene assays, as well as the quantification of total phenolic content (TPC). The DPPH and NO scavenging activities of OAGANPs were significantly higher than those of the OA solution. The β-carotene bleaching assay of OAGANPs showed a dose-dependent trend, while 500 μg/ml was significantly more effective than the other concentrations, which exerted 63.4% of the antioxidant activity. The in vitro antihypertensive assay revealed that the OAGANPs exhibited the most potent ACE inhibition activity, when compared to the OA solution. Hence, results revealed the potential of preparing the OA as a nanoparticle formulation in enhancing the antioxidant and antihypertensive properties compared to the OA solution.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/administration & dosage*; Antihypertensive Agents/administration & dosage; Antioxidants/administration & dosage*; Gum Arabic/administration & dosage*; Orotic Acid/administration & dosage*; Plant Extracts/administration & dosage; Nanoparticles/administration & dosage*
  5. Hisham MDB, Aziz Z, Huin WK, Teoh CH, Jamil AHA
    Asia Pac J Clin Nutr, 2020;29(3):523-536.
    PMID: 32990612 DOI: 10.6133/apjcn.202009_29(3).0011
    BACKGROUND AND OBJECTIVES: Current guidelines recommend reducing intake of diets rich in saturated fats and replacing it with diets rich in unsaturated fats. Palm oil contains a high amount of saturated fatty acids, but its effect on serum lipid levels is unclear. The study aimed to compare the effects of palm oil consumption with other edible oils rich in monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) on serum lipid profiles.

    METHODS AND STUDY DESIGN: We searched Medline, Embase, Cochrane Central Registry of Controlled Trials and CINAHL. Clinical trials were eligible if they compared palm oil-rich diets with diets rich in MUFAs or PUFAs. We pooled results of included studies using a random effects model and assessed the quality of the evidence and certainty of conclusions using the GRADE approach.

    RESULTS: Intake of palm oil intake compared to oils rich in MUFA was associated with increased levels of total cholesterol (TC) [mean difference (MD)=0.27 mmol/L; 95% CI 0.08 to 0.45], LDL-C (MD=0.20 mmol/L; 95% CI 0.02 to 0.37) and HDL-C (MD=0.06 mmol/L; 95% CI 0.02 to 0.10). Similarly, for comparison with oils rich in PUFAs, palm oil showed increased in TC (MD=0.38 mmol/L; 95% CI 0.14 to 0.62), LDL-C (MD= 0.44 mmol/L; 95% CI 0.01 to 0.88) and HDL-C (MD=0.08 mmol/L; 95% CI 0.03 to 0.13). For both comparisons, there were no significant effects on triglycerides.

    CONCLUSIONS: Even though palm oil increases marginally the level of serum lipids, the evidence is mostly of low to moderate quality.

    Matched MeSH terms: Dietary Fats/administration & dosage
  6. Ahmad A, Khan MU, Balkrishnan R
    Lancet Glob Health, 2016 08;4(8):e521.
    PMID: 27443777 DOI: 10.1016/S2214-109X(16)30093-6
    Matched MeSH terms: Anti-Bacterial Agents/administration & dosage*
  7. Gan EK, Lim BS, Mahmud N
    Med J Malaysia, 1978 Sep;33(1):72-5.
    PMID: 750900
    Matched MeSH terms: Tetracyclines/administration & dosage
  8. Chang P
    Med J Malaya, 1970 Jun;24(4):287-9.
    PMID: 4248349
    Matched MeSH terms: Epinephrine/administration & dosage*
  9. Nawaz MS, Shah KU, Khan TM, Rehman AU, Rashid HU, Mahmood S, et al.
    Diabetes Metab Syndr, 2017 Dec;11 Suppl 2:S833-S839.
    PMID: 28709853 DOI: 10.1016/j.dsx.2017.07.003
    OBJECTIVE: Diabetes mellitus is a major health problem in developing countries. There are various insulin therapies to manage diabetes mellitus. This systematic review evaluates various insulin therapies for management of diabetes mellitus worldwide. This review also focuses on recent developments being explored for better management of diabetes mellitus.

    RESEARCH DESIGN AND METHOD: We reviewed a number of published articles from 2002 to 2016 to find out the appropriate management of diabetes mellitus. The paramount parameters of the selected studies include the insulin type & its dose, type of diabetes, duration and comparison of different insulin protocols. In addition, various newly developed approaches for insulin delivery with potential output have also been evaluated.

    RESULTS: A great variability was observed in managing diabetes mellitus through insulin therapy and the important controlling factors found for this therapy include; dose titration, duration of insulin use, type of insulin used and combination therapy of different insulin.

    CONCLUSION: A range of research articles on current trends and recent advances in insulin has been summarized, which led us to the conclusion that multiple daily insulin injections or continuous subcutaneous insulin infusion (insulin pump) is the best method to manage diabetes mellitus. In future perspectives, development of the oral and inhalant insulin would be a tremendous breakthrough in Insulin therapy.

    Matched MeSH terms: Insulin/administration & dosage
  10. Chin AC, Chen CD, Low VL, Lee HL, Azidah AA, Lau KW, et al.
    J Econ Entomol, 2017 10 01;110(5):2247-2251.
    PMID: 29048583 DOI: 10.1093/jee/tox183
    This study was conducted using the glass chamber method to determine the susceptibility status of the dengue vector, Aedes aegypti (L.) from 11 states in Malaysia to commercial mosquito coils containing four different active ingredients, namely metofluthrin, d-allethrin, d-trans allethrin, and prallethrin. Aedes aegypti exhibited various knockdown rates, ranging from 14.44% to 100.00%, 0.00% to 61.67%, 0.00% to 90.00%, and 0.00% to 13.33% for metofluthrin, d-allethrin, d-trans allethrin, and prallethrin, respectively. Overall, mortality rates ranging from 0.00% to 78.33% were also observed among all populations. Additionally, significant associations were detected between the knockdown rates of metofluthrin and d-allethrin, and between metofluthrin and d-trans allethrin, suggesting the occurrence of cross-resistance within pyrethroid insecticides. Overall, this study revealed low insecticidal activity of mosquito coils against Ae. aegypti populations in Malaysia, and consequently may provide minimal personal protection against mosquito bites.
    Matched MeSH terms: Insecticides/administration & dosage*
  11. Siddique MI, Katas H, Jamil A, Mohd Amin MCI, Ng SF, Zulfakar MH, et al.
    Drug Deliv Transl Res, 2019 04;9(2):469-481.
    PMID: 29159691 DOI: 10.1007/s13346-017-0439-7
    Hydrocortisone (HC), topical glucocorticoid along with hydroxytyrosol (HT), and anti-microbial- and anti-oxidant-loaded chitosan nanoparticles (CSNPs) were prepared in large scale and analyzed for their adverse effects on healthy human skin followed by repeated applications. Ten subjects were randomized to receive test (HC-HT CSNPs) and vehicle samples (aqueous (AQ) cream). They were applied on the arms for 28 days, and transepidermal water loss (TEWL), erythema intensity, and irritation score were measured. Blood samples were analyzed for blood hematology, blood biochemistry, and adrenal cortico-thyroid hormone (ACTH) levels. Skin biopsy was obtained to assess histopathological changes in the skin. HC-HT CSNP AQ cream was stored at 4, 25, and 45 °C for a period of 1 year, and its stability was assessed by monitoring their physical appearances, particle size, and pH. Spherical-shaped NPs were successfully upscaled using spinning-disc technology, with insignificant changes in particle size, zeta potential, and incorporation of drugs as compared to the well-established laboratory method. Particle size of HC-HT CSNPs was
    Matched MeSH terms: Anti-Infective Agents/administration & dosage*; Anti-Inflammatory Agents/administration & dosage*; Glucocorticoids/administration & dosage*; Hydrocortisone/administration & dosage*; Phenylethyl Alcohol/administration & dosage; Nanoparticles/administration & dosage*; Skin Cream/administration & dosage*
  12. Rajendran K, Anwar A, Khan NA, Siddiqui R
    ACS Chem Neurosci, 2017 12 20;8(12):2626-2630.
    PMID: 29206032 DOI: 10.1021/acschemneuro.7b00430
    The overall aim of this study was to determine whether conjugation with silver nanoparticles enhances effects of available drugs against primary amoebic meningoencephalitis due to Naegleria fowleri. Amphotericin B, Nystatin, and Fluconazole were conjugated with silver nanoparticles, and synthesis was confirmed using UV-visible spectrophotometry. Atomic force microscopy determined their size in range of 20-100 nm. To determine amoebicidal effects, N. fowleri were incubated with drugs-conjugated silver nanoparticles, silver nanoparticles alone, and drugs alone. The findings revealed that silver nanoparticles conjugation significantly enhanced antiamoebic effects of Nystatin and Amphotericin B but not Fluconazole at micromolar concentrations, compared with the drugs alone. For the first time, our findings showed that silver nanoparticle conjugation enhances efficacy of antiamoebic drugs against N. fowleri. Given the rarity of the disease and challenges in developing new drugs, it is hoped that modifying existing drugs to enhance their antiamoebic effects is a useful avenue that holds promise in improving the treatment of brain-eating amoebae infection due to N. fowleri.
    Matched MeSH terms: Amebicides/administration & dosage*; Nystatin/administration & dosage; Silver/administration & dosage*; Fluconazole/administration & dosage; Metal Nanoparticles/administration & dosage*; Nanocapsules/administration & dosage; Nanoconjugates/administration & dosage*
  13. Khan NA, Ong TYY, Siddiqui R
    ACS Chem Neurosci, 2017 04 19;8(4):687-688.
    PMID: 28225265 DOI: 10.1021/acschemneuro.7b00049
    Brain infections due to Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri often lead to death. Despite differences in the preferential sites of infection in the brain, the mode of delivery of drugs is often intravenous. Here, we discuss targeted therapeutic approach to affect parasite viability without affecting the host cells, with an eye to improve formulation of drugs and/or administration of drugs against brain-eating amoebae.
    Matched MeSH terms: Antiprotozoal Agents/administration & dosage*
  14. Amekyeh H, Billa N, Yuen KH, Chin SL
    AAPS PharmSciTech, 2015 Aug;16(4):871-7.
    PMID: 25588365 DOI: 10.1208/s12249-014-0279-4
    The gastrointestinal (GI) transit behavior of and absorption from an amphotericin B (AmB) solid lipid nanoformulation (SLN) in rats was investigated. We aimed to estimate the gastric emptying time (GET) and cecal arrival time (CAT) of AmB SLN in rats as animal models. From these two parameters, an insight on the absorption window of AmB was ascertained. Three types of SLNs, AmB, paracetamol (PAR), and sulfasalazine (SSZ), were similarly formulated using beeswax/theobroma oil composite as the lipid matrix and characterized with regard to size, viscosity, density, migration propensity within agarose gel, in vitro drug release, morphology, gastrointestinal transit, and in vivo absorption. The GET and CAT were estimated indirectly using marker drugs: PAR and sulfapyridine (SP). All three types of SLNs exhibited identical properties with regard to z-average, viscosity, relative density, and propensity to migrate. PAR was absorbed rapidly from the small intestine following emptying of the SLNs giving the T50E (time for 50% absorption of PAR) to be 1.6 h. SP was absorbed after release and microbial degradation of SSZ from SLN in the colon with a lag time of 2 h post-administration, serving as the estimated cecal arrival time of the SLNs. AmB within SLN was favorably absorbed from the small intestine, albeit slowly.
    Matched MeSH terms: Acetaminophen/administration & dosage; Amphotericin B/administration & dosage; Sulfasalazine/administration & dosage
  15. Ellulu MS, Khaza'ai H, Abed Y, Rahmat A, Ismail P, Ranneh Y
    Inflammopharmacology, 2015 Jun;23(2-3):79-89.
    PMID: 25676565 DOI: 10.1007/s10787-015-0228-1
    The roles of Omega-3 FAs are inflammation antagonists, while Omega-6 FAs are precursors for inflammation. The plant form of Omega-3 FAs is the short-chain α-linolenic acid, and the marine forms are the long-chain fatty acids: docosahexaenoic acid and eicosapentaenoic acid. Omega-3 FAs have unlimited usages, and they are considered as omnipotent since they may benefit heart health, improve brain function, reduce cancer risks and improve people's moods. Omega-3 FAs also have several important biological effects on a range of cellular functions that may decrease the onset of heart diseases and reduce mortality among patients with coronary heart disease, possibly by stabilizing the heart's rhythm and by reducing blood clotting. Some review studies have described the beneficial roles of Omega-3 FAs in cardiovascular diseases (CVDs), cancer, diabetes, and other conditions, including inflammation. Studies of the effect of Omega-3 FAs gathered from studies in diseased and healthy population. CVDs including atherosclerosis, coronary heart diseases, hypertension, and metabolic syndrome were the major fields of investigation. In studies of obesity, as the central obesity increased, the level of adipocyte synthesis of pro-inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) were increased and the level of anti-inflammatory adiponectin was decreased indicating a state of inflammation. The level of C reactive protein (CRP) synthesized from hepatocyte is increased by the influence of IL-6. CRP can be considered as a marker of systemic inflammation associated with increased risks of CVDs. In molecular studies, Omega-3 FAs have direct effects on reducing the inflammatory state by reducing IL-6, TNF-α, CRP and many other factors. While the appropriate dosage along with the administrative duration is not known, the scientific evidence-based recommendations for daily intake are not modified.
    Matched MeSH terms: Anti-Inflammatory Agents/administration & dosage*; Fish Oils/administration & dosage*; Fatty Acids, Omega-3/administration & dosage
  16. Ngan CL, Basri M, Lye FF, Fard Masoumi HR, Tripathy M, Karjiban RA, et al.
    Int J Nanomedicine, 2014;9:4375-86.
    PMID: 25258528 DOI: 10.2147/IJN.S65689
    This research aims to formulate and to optimize a nanoemulsion-based formulation containing fullerene, an antioxidant, stabilized by a low amount of mixed surfactants using high shear and the ultrasonic emulsification method for transdermal delivery. Process parameters optimization of fullerene nanoemulsions was done by employing response surface methodology, which involved statistical multivariate analysis. Optimization of independent variables was investigated using experimental design based on Box-Behnken design and central composite rotatable design. An investigation on the effect of the homogenization rate (4,000-5,000 rpm), sonication amplitude (20%-60%), and sonication time (30-150 seconds) on the particle size, ζ-potential, and viscosity of the colloidal systems was conducted. Under the optimum conditions, the central composite rotatable design model suggested the response variables for particle size, ζ-potential, and viscosity of the fullerene nanoemulsion were 152.5 nm, -52.6 mV, and 44.6 pascal seconds, respectively. In contrast, the Box-Behnken design model proposed that preparation under the optimum condition would produce nanoemulsion with particle size, ζ-potential, and viscosity of 148.5 nm, -55.2 mV, and 39.9 pascal seconds, respectively. The suggested process parameters to obtain optimum formulation by both models yielded actual response values similar to the predicted values with residual standard error of <2%. The optimum formulation showed more elastic and solid-like characteristics due to the existence of a large linear viscoelastic region.
    Matched MeSH terms: Emulsions/administration & dosage; Fullerenes/administration & dosage; Nanostructures/administration & dosage
  17. Lim HP, Tey BT, Chan ES
    J Control Release, 2014 Jul 28;186:11-21.
    PMID: 24816070 DOI: 10.1016/j.jconrel.2014.04.042
    Natural biopolymers have attracted considerable interest for the development of delivery systems for protein drugs owing to their biocompatibility, non-toxicity, renewability and mild processing conditions. This paper offers an overview of the current status and future perspectives of particle designs using biopolymers for the stabilization and controlled-delivery of a model protein drug--insulin. We first describe the design criteria for polymeric encapsulation and subsequently classify the basic principles of particle fabrication as well as the existing particle designs for oral insulin encapsulation. The performances of these existing particle designs in terms of insulin stability and in vitro release behavior in acidic and alkaline media, as well as their in vivo performance are compared and reviewed. This review forms the basis for future works on the optimization of particle design and material formulation for the development of an improved oral delivery system for protein drugs.
    Matched MeSH terms: Delayed-Action Preparations/administration & dosage; Insulin/administration & dosage; Proteins/administration & dosage
  18. Pathak M, Turner M, Palmer C, Coombes AG
    J Biomater Appl, 2014 Sep;29(3):354-63.
    PMID: 24682036 DOI: 10.1177/0885328214528256
    Microporous, poly (ɛ-caprolactone) (PCL) matrices loaded with the antibacterial, metronidazole were produced by rapidly cooling suspensions of drug powder in PCL solutions in acetone. Drug incorporation in the matrices increased from 2.0% to 10.6% w/w on raising the drug loading of the PCL solution from 5% to 20% w/w measured with respect to the PCL content. Drug loading efficiencies of 40-53% were obtained. Rapid 'burst release' of 35-55% of the metronidazole content was recorded over 24 h when matrices were immersed in simulated vaginal fluid (SVF), due to the presence of large amounts of drug on matrix surface as revealed by Raman microscopy. Gradual release of around 80% of the drug content occurred over the following 12 days. Metronidazole released from PCL matrices in SVF retained antimicrobial activity against Gardnerella vaginalis in vitro at levels up to 97% compared to the free drug. Basic modelling predicted that the concentrations of metronidazole released into vaginal fluid in vivo from a PCL matrix in the form of an intravaginal ring would exceed the minimum inhibitory concentration of metronidazole against G. vaginalis. These findings recommend further investigation of PCL matrices as intravaginal devices for controlled delivery of metronidazole in the treatment and prevention of bacterial vaginosis.
    Matched MeSH terms: Anti-Infective Agents/administration & dosage*; Metronidazole/administration & dosage*; Polyesters/administration & dosage*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links