Displaying publications 81 - 100 of 1460 in total

Abstract:
Sort:
  1. Dutta S, Rahman S, Ahmad R, Kumar T, Dutta G, Banerjee S, et al.
    Expert Rev Neurother, 2021 12;21(12):1455-1472.
    PMID: 34756134 DOI: 10.1080/14737175.2021.2003705
    INTRODUCTION: Dementia is a progressive neurodegenerative disorder impairing memory and cognition. Alzheimer's Disease, followed by vascular dementia - the most typical form. Risk factors for vascular dementia include diabetes, cardiovascular disease, hyperlipidemia. Lipids' levels are significantly associated with vascular changes in the brain.

    AREAS COVERED: The present article reviews the cholesterol metabolism in the brain, which includes: the synthesis, transport, storage, and elimination process. Additionally, it reviews the role of cholesterol in the pathogenesis of dementia and statin as a therapeutic intervention in dementia. In addition to the above, it further reviews evidence in support of as well as against statin therapy in dementia, recent updates of statin pharmacology, and demerits of use of statin pharmacotherapy.

    EXPERT OPINION: Amyloid-β peptides and intraneuronal neurofibrillary tangles are markers of Alzheimer's disease. Evidence shows cholesterol modulates the functioning of enzymes associated with Amyloid-β peptide processing and synthesis. Lowering cholesterol using statin may help prevent or delay the progression of dementia. This paper reviews the role of statin in dementia and recommends extensive future studies, including genetic research, to obtain a precise medication approach for patients with dementia.

    Matched MeSH terms: Brain/metabolism
  2. Albart SA, Yusof Khan AHK, Abdul Rashid A, Wan Zaidi WA, Bidin MZ, Looi I, et al.
    PeerJ, 2022;10:e13310.
    PMID: 35469195 DOI: 10.7717/peerj.13310
    BACKGROUND: Despite rapid advances in acute ischaemic stroke (AIS) management, many healthcare professionals (HCPs) might not be aware of the latest recommended management of AIS patients. Therefore, we aimed to determine the level and factors associated with AIS management knowledge among Malaysian HCPs.

    METHODS: This cross-sectional online questionnaire study was conducted nationwide among 627 HCPs in Malaysia using the Acute Stroke Management Questionnaire (ASMaQ). Multiple logistic regression was used to predict the relationship between the independent variables (age, gender, years of service, profession, work setting, work sector, seeing stroke patients in daily practice, and working with specialists) and the outcome variable (good vs poor knowledge).

    RESULTS: Approximately 76% (95% CI [73-79%]) of HCPs had good overall knowledge of stroke. The highest proportion of HCPs with good knowledge was noted for General Stroke Knowledge (GSK) [88.5% (95% CI [86-91%])], followed by Advanced Stroke Management (ASM) [61.2% (95% CI [57-65%])] and Hyperacute Stroke Management (HSM) [58.1% (95% CI [54-62%])]. The odds of having poor knowledge of stroke were significantly higher among non-doctor HCPs [adjusted OR = 3.46 (95% CI [1.49-8.03]), P = 0.004]; among those not seeing stroke patients in daily practice [adjusted OR = 2.67 (95% CI [1.73-4.10]), P < 0.001]; and among those working without specialists [adjusted OR = 2.41 (95% CI [1.38-4.18]), P = 0.002].

    CONCLUSIONS: Stroke education should be prioritised for HCPs with limited experience and guidance. All HCPs need to be up-to-date on the latest AIS management and be able to make a prompt referral to an appropriate facility. Therefore, more stroke patients will benefit from advanced stroke care.

    Matched MeSH terms: Brain Ischemia*
  3. Mot YY, Moses EJ, Mohd Yusoff N, Ling KH, Yong YK, Tan JJ
    Cell Mol Neurobiol, 2023 Mar;43(2):469-489.
    PMID: 35103872 DOI: 10.1007/s10571-022-01201-y
    Traumatic brain injury (TBI) could result in life-long disabilities and death. Though the mechanical insult causes primary injury, the secondary injury due to dysregulated responses following neuronal apoptosis and inflammation is often the cause for more detrimental consequences. Mesenchymal stromal cell (MSC) has been extensively investigated as the emerging therapeutic for TBI, and the functional properties are chiefly attributed to their secretome, especially the exosomes. Delivering these nanosize exosomes have shown to ameliorate post-traumatic injury and restore brain functions. Recent technology advances also allow engineering MSC-derived exosomes to carry specific biomolecules of interest to augment their therapeutic outcome. In this review, we discuss the pathophysiology of TBI and summarize the recent progress in the applications of MSCs-derived exosomes, the roles and the signalling mechanisms underlying the protective effects in the treatment of the TBI.
    Matched MeSH terms: Brain Injuries*
  4. Soreq L, Bird H, Mohamed W, Hardy J
    PLoS One, 2023;18(2):e0277630.
    PMID: 36827281 DOI: 10.1371/journal.pone.0277630
    Alzheimer's disease is the most common neurological disease worldwide. Unfortunately, there are currently no effective treatment methods nor early detection methods. Furthermore, the disease underlying molecular mechanisms are poorly understood. Global bulk gene expression profiling suggested that the disease is governed by diverse transcriptional regulatory networks. Thus, to identify distinct transcriptional networks impacted into distinct neuronal populations in Alzheimer, we surveyed gene expression differences in over 25,000 single-nuclei collected from the brains of two Alzheimer's in disease patients in Braak stage I and II and age- and gender-matched controls hippocampal brain samples. APOE status was not measured for this study samples (as well as CERAD and THAL scores). Our bioinformatic analysis identified discrete glial, immune, neuronal and vascular cell populations spanning Alzheimer's disease and controls. Astrocytes and microglia displayed the greatest transcriptomic impacts, with the induction of both shared and distinct gene programs.
    Matched MeSH terms: Brain/metabolism
  5. Yu M, Xu S, Hu H, Li S, Yang G
    Behav Brain Res, 2023 Apr 12;443:114209.
    PMID: 36368444 DOI: 10.1016/j.bbr.2022.114209
    OBJECTIVE: We investigated brain activity associated with executive control attention network in elite, expert, and novice female ice hockey athletes during the revised lateralized attention network tast to determine whether the neural correlates of performance differ by skill level.

    METHODS: We collected and analyzed functional near-infrared spectroscopy data of 38 participants while performing the revised lateralized attention network tast.

    RESULTS: Elite players were significantly faster than novices (p = .005), and the experts' overall accuracy rate (ACC) was higher than that of novices (p = .001). The effect of the executive network on reaction time was higher in novices than in elite players (p = .008) and experts (p = .004). The effect of the executive network on the ACC was lower in elite players than in experts (p = .009) and novices (p = .010). Finally, elite player had higher flanker conflict effects on RT (p = .005) under the invalid cue condition. the effect of the alertness network and orientation on the ACC was lower in elite players than in novices (p = .000) and experts (p = .022). Changes in the blood oxygen level-dependent signal related to the flanker effect were significantly different in the right dorsolateral prefrontal cortex (F=3.980, p = .028) and right inferior frontal gyrus (F=3.703, p = .035) among the three groups. Elit players showed more efficient executive control (reduced conflict effect on ACC) (p = .006)in the RH.The changes related to the effect of blood oxygen level on orienting were significantly different in the right frontal eye fields (F=3.883, p = .030) among the three groups, Accompanied by significant activation of the right dorsolateral prefrontal cortex(p = .026).

    CONCLUSION: Our findings provide partial evidence of the superior cognitive performance and high neural efficiency of elite ice hockey players during cognitive tasks. These results demonstrate the right hemisphere superiority for executive control.We also found that specific brain activation in hockey players does not show a clear and linear relationship with skill level.

    Matched MeSH terms: Brain/physiology
  6. Fauzi A, Thoe ES, Quan TY, Yin ACY
    J Diabetes Complications, 2023 Nov;37(11):108629.
    PMID: 37866274 DOI: 10.1016/j.jdiacomp.2023.108629
    Alzheimer Associated Diabetes Mellitus, commonly known as Type 3 Diabetes Mellitus (T3DM) is a distinct subtype of diabetes with a pronounced association with Alzheimer's disease (AD). Insulin resistance serves as a pivotal link between these two conditions, leading to diminished insulin sensitivity, hyperglycemia, and impaired glucose uptake. The brain, a vital organ in AD context, is also significantly impacted by insulin resistance, resulting in energy deficits and neuronal damage, which are hallmark features of the neurodegenerative disorder. To pave the way for potential therapeutic interventions targeting the insulin resistance pathway, it is crucial to comprehend the intricate pathophysiology of T3DM and identify the overlapped features between diabetes and AD. This comprehensive review article aims to explore various pathway such as AMPK, PPARγ, cAMP and P13K/Akt pathway as potential target for management of T3DM. Through the analysis of these complex mechanisms, our goal is to reveal their interdependencies and support the discovery of innovative therapeutic strategies. The review extensively discusses several promising pharmaceutical candidates that have demonstrated dual drug action mechanisms, addressing both peripheral and cerebral insulin resistance observed in T3DM. These candidates hold significant promise for restoring insulin function and mitigating the detrimental effects of insulin resistance on the brain. The exploration of these therapeutic options contributes to the development of innovative interventions that alleviate the burden of T3DM and enhance patient care.
    Matched MeSH terms: Brain/metabolism
  7. Abdullah JM, Idris Z, Ghani AR, Lim MS
    J Neurosurg Sci, 2023 Jun;67(3):367-373.
    PMID: 33709663 DOI: 10.23736/S0390-5616.21.05249-8
    BACKGROUND: Traumatic brain injury (TBI) has recently become a major concern for public health care and a socioeconomic burden internationally. Prognostic models are mathematical models developed from specific populations which are used to predict the mortality and unfavorable outcomes especially in trauma centers. Hence, we formulate a study to perform an external validation of the IMPACT and CRASH prognostic models; the CRASH model to predict 14-day mortality and 6-month unfavorable outcome and the IMPACT model to estimate 6-month mortality and unfavorable outcome in a single center cohort of TBI patients in Malaysia.

    METHODS: All patients with traumatic brain injury (mild, moderate, and severe) who were admitted to Queen Elizabeth Hospital from November 1, 2017, to January 31, 2019, were prospectively analyzed through a data collection sheet. The discriminatory power of the models was assessed as area under the receiver operating characteristic curve and calibration was assessed using the Hosmer-Lemeshow (H-L) goodness-of-fit test and Cox calibration regression analysis.

    RESULTS: We analyzed 281 patients with significant TBI treated in a single neurosurgical center in Malaysia over a 2-year period. The overall observed 14-day mortality was 9.6%, a 6-month unfavorable outcome of 23.5%, and a 6-month mortality of 13.2%. Overall, both the CRASH and IMPACT models showed good discrimination with AUCs ranging from 0.88 to 0.94 and both models calibrating satisfactorily H-L GoF P>0.05 and calibration slopes >1.0 although IMPACT seemed to be slightly more superior compared to the CRASH model.

    CONCLUSIONS: The CRASH and IMPACT prognostic models displayed satisfactory overall performance in our cohort of TBI patients, but further investigations on factors contributing to TBI outcomes and continuous updating on both models remain crucial.

    Matched MeSH terms: Brain Injuries*
  8. Manor R, Cheaha D, Perimal E, Sathirapanya P, Kumarnsit E, Samerphob N
    In Vivo, 2023;37(4):1649-1657.
    PMID: 37369513 DOI: 10.21873/invivo.13250
    BACKGROUND/AIM: There seems to be a correlation between changes in movement patterns with aging and brain activation. In the preparation and execution of movements, neural oscillations play an important role. In this study, cortical high frequency brain oscillations were analyzed in 15 healthy young adults and 15 elderly adults who participated in eye-hand coordination tasks.

    PATIENTS AND METHODS: The brain activities of healthy young and older adults were recorded using electroencephalography (EEG).

    RESULTS: Elderly participants spent significantly more time completing the task than young participants. During eye-hand coordination in elderly groups, beta power decreased significantly in the central midline and parietal brain regions. The data suggest that healthy elderly subjects had intact cognitive performance, but relatively poor eye-hand coordination associated with loss of beta brain oscillation in the central midline and parietal cortex and reduced ability to attentional movement.

    CONCLUSION: Beta frequency in the parietal brain sites may contribute to attentional movement. This could be an important method for monitoring cognitive brain function changes as the brain ages.

    Matched MeSH terms: Brain/physiology
  9. Lam XJ, Maniam S, Cheah PS, Ling KH
    Cell Mol Neurobiol, 2023 Oct;43(7):3417-3433.
    PMID: 37517069 DOI: 10.1007/s10571-023-01394-w
    Repressor element-1 silencing transcription factor (REST) or also known as neuron-restrictive silencing factor (NRSF), is the key initiator of epigenetic neuronal gene-expression modification. Identification of a massive number of REST-targeted genes in the brain signifies its broad involvement in maintaining the functionality of the nervous system. Additionally, REST plays a crucial role in conferring neuroprotection to the neurons against various stressors or insults during injuries. At the cellular level, nuclear localisation of REST is a key determinant for the functional transcriptional regulation of REST towards its target genes. Emerging studies reveal the implication of REST nuclear mislocalisation or dysregulation in several neurological diseases. The expression of REST varies depending on different types of neurological disorders, which has created challenges in the discovery of REST-targeted interventions. Hence, this review presents a comprehensive summary on the physiological roles of REST throughout brain development and its implications in neurodegenerative and neurodevelopmental disorders, brain tumours and cerebrovascular diseases. This review offers valuable insights to the development of potential therapeutic approaches targeting REST to improve pathologies in the brain. The important roles of REST as a key player in the nervous system development, and its implications in several neurological diseases.
    Matched MeSH terms: Brain/metabolism
  10. Yeoh CW, Law WC
    Medicine (Baltimore), 2023 Dec 22;102(51):e36676.
    PMID: 38134114 DOI: 10.1097/MD.0000000000036676
    RATIONALE: Heat-related illnesses have protean manifestations that can mimic other life-threatening conditions. The diagnosis of heat stroke requires a high index of suspicion if the patient has been exposed to a high-temperature environment. Central nervous system dysfunction is a cardinal feature. Strict adherence to temperature criteria can potentially lead to misdiagnosis.

    PATIENT CONCERNS: A 37-year-old construction worker was brought in by his wife and coworker due to a sudden loss of consciousness while resting after completing his work.

    DIAGNOSES: Due to challenges faced during the coronavirus disease 2019 pandemic, as well as language barriers, a detailed history from the coworker who witnessed the patient's altered sensorium was not available. He was initially suspected of having encephalitis and brainstem stroke. However, subsequent investigations revealed multiorgan dysfunction with a normal brain computed tomography and cerebral computed tomography angiogram. In view of the multiple risk factors for heat stroke, pupillary constriction, and urine color suggestive of rhabdomyolysis, a diagnosis of heat stroke was made.

    INTERVENTIONS: Despite delayed diagnosis, the patient's multiorgan dysfunction recovered within days with basic supportive care.

    OUTCOMES: There were no noticeable complications on follow-up 14 months later.

    LESSONS: Heat stroke can be easily confused with other neurological pathologies, particularly if no history can be obtained from the patient or informant. When approaching a comatose patient, we propose that serum creatinine kinase should be considered as an initial biochemical screening test.

    Matched MeSH terms: Brain/pathology
  11. Azab WA
    Childs Nerv Syst, 2023 Dec;39(12):3371-3372.
    PMID: 37328661 DOI: 10.1007/s00381-023-06030-y
    BACKGROUND: One of the main difficulties in third ventricle surgery is its deep and central location within the brain, surrounded by many eloquent neurovascular structures. Such anatomical environment obviously makes it very hard to safely approach and excise lesions in there.

    METHODS: The introduction of the surgical microscope into the neurosurgical field undoubtedly played an important and pivotal role in improving the surgical results and increasing the safety of operations in and around the third ventricle. Although the surgical microscope remained the gold standard of intraoperative visualization for many decades, the advent of endoscopes revolutionized surgery of the third ventricle. Neuroendoscopic procedures for lesions of the third ventricle encompass a greatly variable array of endochannel, endoscope-assisted and endoscope-controlled techniques.

    CONCLUSION: In this collection on purely endoscopic and endoscope-assisted approaches to lesions of the third ventricle in pediatric age, the readership is presented with a selected group of these operations performed by experts in the field, shedding light mainly on their technical aspects and surgical pearls. The text description in each article is supplemented by a surgical video.

    Matched MeSH terms: Brain/surgery
  12. Khor SLQ, Ng KY, Koh RY, Chye SM
    CNS Neurol Disord Drug Targets, 2024;23(3):315-330.
    PMID: 36999187 DOI: 10.2174/1871527322666230330093829
    The blood-brain barrier (BBB) plays a crucial role in the central nervous system by tightly regulating the influx and efflux of biological substances between the brain parenchyma and peripheral circulation. Its restrictive nature acts as an obstacle to protect the brain from potentially noxious substances such as blood-borne toxins, immune cells, and pathogens. Thus, the maintenance of its structural and functional integrity is vital in the preservation of neuronal function and cellular homeostasis in the brain microenvironment. However, the barrier's foundation can become compromised during neurological or pathological conditions, which can result in dysregulated ionic homeostasis, impaired transport of nutrients, and accumulation of neurotoxins that eventually lead to irreversible neuronal loss. Initially, the BBB is thought to remain intact during neurodegenerative diseases, but accumulating evidence as of late has suggested the possible association of BBB dysfunction with Parkinson's disease (PD) pathology. The neurodegeneration occurring in PD is believed to stem from a myriad of pathogenic mechanisms, including tight junction alterations, abnormal angiogenesis, and dysfunctional BBB transporter mechanism, which ultimately causes altered BBB permeability. In this review, the major elements of the neurovascular unit (NVU) comprising the BBB are discussed, along with their role in the maintenance of barrier integrity and PD pathogenesis. We also elaborated on how the neuroendocrine system can influence the regulation of BBB function and PD pathogenesis. Several novel therapeutic approaches targeting the NVU components are explored to provide a fresh outlook on treatment options for PD.
    Matched MeSH terms: Brain/pathology
  13. Fong SL, Wong KT, Tan CT
    Brain, 2024 Mar 01;147(3):830-838.
    PMID: 38079534 DOI: 10.1093/brain/awad415
    Dengue virus is a flavivirus transmitted by the mosquitoes, Aedes aegypti and Aedes albopictus. Dengue infection by all four serotypes (DEN 1 to 4) is endemic globally in regions with tropical and subtropical climates, with an estimated 100-400 million infections annually. Among those hospitalized, the mortality is about 1%. Neurological involvement has been reported to be about 5%. The spectrum of neurological manifestations spans both the peripheral and central nervous systems. These manifestations could possibly be categorized into those directly related to dengue infection, i.e. acute and chronic encephalitis, indirect complications leading to dengue encephalopathy, and post-infectious syndrome due to immune-mediated reactions, and manifestations with uncertain mechanisms, such as acute transverse myelitis, acute cerebellitis and myositis. The rising trend in global dengue incidence calls for attention to a more explicit definition of each neurological manifestation for more accurate epidemiological data. The actual global burden of dengue infection with neurological manifestation is essential for future planning and execution of strategies, especially in the development of effective antivirals and vaccines against the dengue virus. In this article, we discuss the recent findings of different spectrums of neurological manifestations in dengue infection and provide an update on antiviral and vaccine development and their challenges.
    Matched MeSH terms: Brain Diseases*
  14. Habeeb M, Vengateswaran HT, You HW, Saddhono K, Aher KB, Bhavar GB
    J Mater Chem B, 2024 Feb 14;12(7):1677-1705.
    PMID: 38288615 DOI: 10.1039/d3tb02485g
    Glioblastoma (GBM) is a highly aggressive and lethal type of brain tumor with complex and diverse molecular signaling pathways involved that are in its development and progression. Despite numerous attempts to develop effective treatments, the survival rate remains low. Therefore, understanding the molecular mechanisms of these pathways can aid in the development of targeted therapies for the treatment of glioblastoma. Nanomedicines have shown potential in targeting and blocking signaling pathways involved in glioblastoma. Nanomedicines can be engineered to specifically target tumor sites, bypass the blood-brain barrier (BBB), and release drugs over an extended period. However, current nanomedicine strategies also face limitations, including poor stability, toxicity, and low therapeutic efficacy. Therefore, novel and advanced nanomedicine-based strategies must be developed for enhanced drug delivery. In this review, we highlight risk factors and chemotherapeutics for the treatment of glioblastoma. Further, we discuss different nanoformulations fabricated using synthetic and natural materials for treatment and diagnosis to selectively target signaling pathways involved in GBM. Furthermore, we discuss current clinical strategies and the role of artificial intelligence in the field of nanomedicine for targeting GBM.
    Matched MeSH terms: Blood-Brain Barrier/metabolism
  15. Lim CH, Soga T, Parhar IS
    Proc Natl Acad Sci U S A, 2023 Jan 17;120(3):e2117547120.
    PMID: 36623187 DOI: 10.1073/pnas.2117547120
    Social disturbance in interpersonal relationships is the primary source of stress in humans. Spexin (SPX, SPX1a in cichlid), an evolutionarily conserved neuropeptide with diverse physiological functions, is up-regulated in the brain during chronic social defeat stress in teleost. On the other hand, repeated exposure to social stress can lead to dysregulation of the monoaminergic system and increase the vulnerability of developing depression. Since dysfunction of the serotonin (5-hydroxytryptamine, 5-HT) system is associated with social stress and the pathophysiology of depression, the present study investigated the regulatory relationship between the central 5-HT system and SPX1a in the male teleost, Nile tilapia (Oreochromis niloticus). To identify stress factors that regulate SPX1a gene expression, cortisol, dexamethasone (DEX), and 5-HT were used to treat tilapia brain primary cultures. Our study shows cortisol and DEX treatment had no effect on SPX1a gene expression, but SPX1a gene expression was down-regulated following 5-HT treatment. Anatomical localization showed a close association between 5-HT immunoreactive projections and SPX1a neurons in the semicircular torus. In addition, 5-HT receptors (5-HT2B) were expressed in SPX1a neurons. SPX1a immunoreactive neurons and SPX1a gene expression were significantly increased in socially defeated tilapia. On the other hand, citalopram (antidepressant, 5-HT antagonist) treatment to socially defeated tilapia normalized SPX1a gene expression to control levels. Taken together, the present study shows that 5-HT is an upstream regulator of SPX1a and that the inhibited 5-HT activates SPX1a during social defeat.
    Matched MeSH terms: Brain/metabolism
  16. Syed Nasser N, Ibrahim B, Sharifat H, Abdul Rashid A, Suppiah S
    J Clin Neurosci, 2019 Jul;65:87-99.
    PMID: 30955950 DOI: 10.1016/j.jocn.2019.03.054
    Functional magnetic resonance imaging (fMRI) is a non-invasive imaging modality that enables the assessment of neural connectivity and oxygen utility of the brain using blood oxygen level dependent (BOLD) imaging sequence. Electroencephalography (EEG), on the other hands, looks at cortical electrical impulses of the brain thus detecting brainwave patterns during rest and thought processing. The combination of these two modalities is called fMRI with simultaneous EEG (fMRI-EEG), which has emerged as a new tool for experimental neuroscience assessments and has been applied clinically in many settings, most commonly in epilepsy cases. Recent advances in imaging has led to fMRI-EEG being utilized in behavioural studies which can help in giving an objective assessment of ambiguous cases and help in the assessment of response to treatment by providing a non-invasive biomarker of the disease processes. We aim to review the role and interpretation of fMRI-EEG in studies pertaining to psychiatric disorders and behavioral abnormalities.
    Matched MeSH terms: Brain/physiopathology; Brain Mapping/methods; Brain Waves/physiology
  17. Lim FT, Ogawa S, Parhar IS
    Brain Res, 2016 11 01;1650:60-72.
    PMID: 27568467 DOI: 10.1016/j.brainres.2016.08.033
    Injury to neuronal tissues in the central nervous system (CNS) of mammals results in neural degeneration and sometime leads to loss of function, whereas fish retain a remarkable potential for neuro-regeneration throughout life. Thus, understanding the mechanism of neuro-regeneration in fish CNS would be useful to improve the poor neuro-regenerative capability in mammals. In the present study, we characterized a neuro-regenerative process in the brain of a cichlid, tilapia, Oreochromis niloticus. Morphological observations showed that the damaged brain region (habenula) successfully regrew and reinnervated axonal projections by 60 days post-damage. A fluorescent carbocyanine tracer, DiI tracing revealed a recovery of the major neuronal projection from the regenerated habenula to the interpenduncular nucleus by 60 days post-damage. TUNEL assay showed a significant increase of apoptotic cells (~234%, P<0.01) at one day post-damage, while the number of bromodeoxyuridine (BrdU)-positive proliferative cells were significantly increased (~92%, P<0.05) at 7 days post-damage compared with sham-control fish. To demonstrate a potential role of apoptotic activity in the neuro-regeneration, effects of degenerative neural tissue on cell proliferation were examined in vivo. Implantation of detached neural but not non-neural tissues into the cranial cavity significantly (P<0.01) increased the number of BrdU-positive cells nearby the implantation regions at 3 days after the implantation. Furthermore, local injection of the protein extract and cerebrospinal fluid collected from injured fish brain significantly induced cell proliferation in the brain. These results suggest that factor(s) derived from apoptotic neural cells may play a critical role in the neuro-regeneration in teleost brain.
    Matched MeSH terms: Brain/physiology; Brain Injuries/metabolism*; Brain Injuries/physiopathology; Brain Injuries/therapy
  18. Delikan AE, Namazie M
    Med J Malaysia, 1979 Sep;34(1):42-5.
    PMID: 542150
    Matched MeSH terms: Brain Edema/therapy; Brain Injuries/therapy*; Brain Stem/injuries
  19. Au A
    Adv Clin Chem, 2018 03 08;85:31-69.
    PMID: 29655461 DOI: 10.1016/bs.acc.2018.02.002
    Ischemic stroke is a sudden loss of brain function due to the reduction of blood flow. Brain tissues cease to function with subsequent activation of the ischemic cascade. Metabolomics and lipidomics are modern disciplines that characterize the metabolites and lipid components of a biological system, respectively. Because the pathogenesis of ischemic stroke is heterogeneous and multifactorial, it is crucial to establish comprehensive metabolomic and lipidomic approaches to elucidate these alterations in this disease. Fortunately, metabolomic and lipidomic studies have the distinct advantages of identifying tissue/mechanism-specific biomarkers, predicting treatment and clinical outcome, and improving our understanding of the pathophysiologic basis of disease states. Therefore, recent applications of these analytical approaches in the early diagnosis of ischemic stroke were discussed. In addition, the emerging roles of metabolomics and lipidomics on ischemic stroke were summarized, in order to gain new insights into the mechanisms underlying ischemic stroke and in the search for novel metabolite biomarkers and their related pathways.
    Matched MeSH terms: Brain/metabolism*; Brain/pathology; Brain Ischemia/metabolism*; Brain Ischemia/pathology
  20. Ramli N, Rahmat K, Lim KS, Tan CT
    Eur J Radiol, 2015 Sep;84(9):1791-800.
    PMID: 26187861 DOI: 10.1016/j.ejrad.2015.03.024
    Identification of the epileptogenic zone is of paramount importance in refractory epilepsy as the success of surgical treatment depends on complete resection of the epileptogenic zone. Imaging plays an important role in the locating and defining anatomic epileptogenic abnormalities in patients with medically refractory epilepsy. The aim of this article is to present an overview of the current MRI sequences used in epilepsy imaging with special emphasis of lesion seen in our practices. Optimisation of epilepsy imaging protocols are addressed and current trends in functional MRI sequences including MR spectroscopy, diffusion tensor imaging and fusion MR with PET and SPECT are discussed.
    Matched MeSH terms: Brain/pathology*; Brain/physiopathology; Brain/radionuclide imaging*; Brain Mapping/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links