Displaying publications 81 - 89 of 89 in total

Abstract:
Sort:
  1. Goh A, Kum YL, Mak SY, Quek YT
    PMID: 11187482
    Health-Level (HL) 7 message semantics allows effective functional implementation of Electronic Medical Record (EMR)--encompassing both clinical and administrative (i.e. demographic and financial) information--interchange systems, at the expense of complexity with respect the Protocol Data Unit (PDU) structure and the client-side application architecture. In this paper we feature the usage of the Extensible Markup Language (XML) document-object modelling and Java client-server connectivity towards the implementation of a Web-based system for EMR transaction processing. Our solution features an XML-based description of EMR templates, which are subsequently transcribed into a Hypertext Markup Language (HTML)-Javascript form. This allows client-side user interfaceability and server-side functionality--i.e. message validation, authentication and database connectivity--to be handled through standard Web client-server mechanisms, the primary assumption being availability of a browser capable of XML documents and the associated stylesheets. We assume usage of the Internet as the interchange medium, hence the necessity for authentication and data privacy mechanisms, both of which can be constructed using standard Java-based building blocks.
    Matched MeSH terms: Computer Communication Networks
  2. Abidi SS, Goh A, Yusoff Z
    Stud Health Technol Inform, 1998;52 Pt 2:1282-6.
    PMID: 10384666
    The practice of medicine, with its wide range of environmental conditions and complex dependencies, has long been used as a test bed for various advanced technologies. Telemedicine, as conceptualised within the Multimedia Super Corridor (MSC) context, is seen as the application of several relatively mature technologiesartificial intelligence (AI), multimedia communication and information systems (IS) amongst othersso as to benefit a large cross-section of the Malaysian population. We will discuss in general terms the Malaysian vision on the comprehensive MSC telemedicine solution, its functionality and associated operational conditions. In particular, this paper focuses on the conceptualisation of one key telemedical component i.e. the Lifetime Health Plan (LHP) system, which is eventually intended to be a distributed multi-module application for the periodic monitoring and generation of health-care advisories for upwards of 20 million Malaysians.
    Matched MeSH terms: Computer Communication Networks
  3. Showen R, Dunson C, Woodman GH, Christopher S, Lim T, Wilson SC
    Mar Pollut Bull, 2018 Mar;128:496-507.
    PMID: 29571401 DOI: 10.1016/j.marpolbul.2018.01.029
    Results are presented of a demonstration of real-time fish blast location in Sabah, Malaysia using a networked hydroacoustic array based on the ShotSpotter gunshot location system. A total of six acoustic sensors - some fixed and others mobile - were deployed at ranges from 1 to 9 km to detect signals from controlled test blasts. This allowed the blast locations to be determined to within 60 m accuracy, and for the calculated locations to be displayed on a map on designated internet-connected computers within 10 s. A smaller three-sensor system was then installed near Semporna in Eastern Sabah that determined the locations of uncontrolled blasts set off by local fishermen. The success of these demonstrations shows that existing technology can be used to protect reefs and permit more effective management of blast fishing activity through improved detection and enforcement measures and enhanced community engagement.
    Matched MeSH terms: Computer Communication Networks
  4. Faheem M, Butt RA, Raza B, Alquhayz H, Abbas MZ, Ngadi MA, et al.
    Sensors (Basel), 2019 Nov 20;19(23).
    PMID: 31757104 DOI: 10.3390/s19235072
    The importance of body area sensor networks (BASNs) is increasing day by day because of their increasing use in Internet of things (IoT)-enabled healthcare application services. They help humans in improving their quality of life by continuously monitoring various vital signs through biosensors strategically placed on the human body. However, BASNs face serious challenges, in terms of the short life span of their batteries and unreliable data transmission, because of the highly unstable and unpredictable channel conditions of tiny biosensors located on the human body. These factors may result in poor data gathering quality in BASNs. Therefore, a more reliable data transmission mechanism is greatly needed in order to gather quality data in BASN-based healthcare applications. Therefore, this study proposes a novel, multiobjective, lion mating optimization inspired routing protocol, called self-organizing multiobjective routing protocol (SARP), for BASN-based IoT healthcare applications. The proposed routing scheme significantly reduces local search problems and finds the best dynamic cluster-based routing solutions between the source and destination in BASNs. Thus, it significantly improves the overall packet delivery rate, residual energy, and throughput with reduced latency and packet error rates in BASNs. Extensive simulation results validate the performance of our proposed SARP scheme against the existing routing protocols in terms of the packet delivery ratio, latency, packet error rate, throughput, and energy efficiency for BASN-based health monitoring applications.
    Matched MeSH terms: Computer Communication Networks
  5. Marzo RR, Ahmad A, Islam MS, Essar MY, Heidler P, King I, et al.
    PLoS Negl Trop Dis, 2022 01;16(1):e0010103.
    PMID: 35089917 DOI: 10.1371/journal.pntd.0010103
    BACKGROUND: Mass vaccination campaigns have significantly reduced the COVID-19 burden. However, vaccine hesitancy has posed significant global concerns. The purpose of this study was to determine the characteristics that influence perceptions of COVID-19 vaccine efficacy, acceptability, hesitancy and decision making to take vaccine among general adult populations in a variety of socioeconomic and cultural contexts.

    METHODS: Using a snowball sampling approach, we conducted an online cross-sectional study in 20 countries across four continents from February to May 2021.

    RESULTS: A total of 10,477 participants were included in the analyses with a mean age of 36±14.3 years. The findings revealed the prevalence of perceptions towards COVID-19 vaccine's effectiveness (78.8%), acceptance (81.8%), hesitancy (47.2%), and drivers of vaccination decision-making (convenience [73.3%], health providers' advice [81.8%], and costs [57.0%]). The county-wise distribution included effectiveness (67.8-95.9%; 67.8% in Egypt to 95.9% in Malaysia), acceptance (64.7-96.0%; 64.7% in Australia to 96.0% in Malaysia), hesitancy (31.5-86.0%; 31.5% in Egypt to 86.0% in Vietnam), convenience (49.7-95.7%; 49.7% in Austria to 95.7% in Malaysia), advice (66.1-97.3%; 66.1% in Austria to 97.3% in Malaysia), and costs (16.0-91.3%; 16.0% in Vietnam to 91.3% in Malaysia). In multivariable regression analysis, several socio-demographic characteristics were identified as associated factors of outcome variables including, i) vaccine effectiveness: younger age, male, urban residence, higher education, and higher income; ii) acceptance: younger age, male, urban residence, higher education, married, and higher income; and iii) hesitancy: male, higher education, employed, unmarried, and lower income. Likewise, the factors associated with vaccination decision-making including i) convenience: younger age, urban residence, higher education, married, and lower income; ii) advice: younger age, urban residence, higher education, unemployed/student, married, and medium income; and iii) costs: younger age, higher education, unemployed/student, and lower income.

    CONCLUSIONS: Most participants believed that vaccination would effectively control and prevent COVID-19, and they would take vaccinations upon availability. Determinant factors found in this study are critical and should be considered as essential elements in developing COVID-19 vaccination campaigns to boost vaccination uptake in the populations.

    Matched MeSH terms: Computer Communication Networks
  6. Harum H
    PMID: 15747966
    The Integrated Telehealth Project of Malaysia is considered a principal enabler for the nation's Vision 2020 as well as the National Health Vision. Being in such an unenviable position, of being not only the pioneer for such an integrated project, but also with no benchmark to compare with, the project implementers have faced manifold challenges along the way. This chapter deals with some of the challenges and lessons learnt that have accumulated as the project progressed.
    Matched MeSH terms: Computer Communication Networks
  7. Papakostopoulos D, Williams A, Ramani V, Hart CJ, Dodson K, Papakostopoulos S
    J Telemed Telecare, 1999;5 Suppl 1:S17-20.
    PMID: 10534828
    The First International Teleconference in Ophthalmology was held during March 1998 between five sites in the UK, USA, Greece and Malaysia. ISDN transmission at 128 kbit/s was used to reduce costs while maintaining the clarity of the presented material. Specialized lecture theatres were not available at all sites and conventional halls had to be adapted for videoconferencing. For this reason initial point-to-point testing was carried with Bristol to simplify problem solving. Thereafter, a multipoint bridge was used to connect all sites together. During the conference a number of individual presentations were given, all followed by extensive discussion periods. Special instructions were given beforehand on the production of slide material, with particular reference to font sizes and colour combinations. Full use was made of various presentation media, including slides, videos and live demonstrations. The conference was attended by over 500 delegates, all of whom were specialists in ophthalmology. The technology employed was ideal for teaching purposes. However, if used in a clinical field, it should be kept in mind that the choice of transmission rate makes certain features not easily apparent in images but they become clearer when pointed out by the presenter.
    Matched MeSH terms: Computer Communication Networks
  8. Mamman M, Hanapi ZM, Abdullah A, Muhammed A
    PLoS One, 2019;14(1):e0210310.
    PMID: 30682038 DOI: 10.1371/journal.pone.0210310
    The increasing demand for network applications, such as teleconferencing, multimedia messaging and mobile TV, which have diverse requirements, has resulted in the introduction of Long Term Evolution (LTE) by the Third Generation Partnership Project (3GPP). LTE networks implement resource allocation algorithms to distribute radio resource to satisfy the bandwidth and delay requirements of users. However, the scheduling algorithm problem of distributing radio resources to users is not well defined in the LTE standard and thus considerably affects transmission order. Furthermore, the existing radio resource algorithm suffers from performance degradation under prioritised conditions because of the minimum data rate used to determine the transmission order. In this work, a novel downlink resource allocation algorithm that uses quality of service (QoS) requirements and channel conditions to address performance degradation is proposed. The new algorithm is formulated as an optimisation problem where network resources are allocated according to users' priority, whereas the scheduling algorithm decides on the basis of users' channel status to satisfy the demands of QoS. Simulation is used to evaluate the performance of the proposed algorithm, and results demonstrate that it performs better than do all other algorithms according to the measured metrics.
    Matched MeSH terms: Computer Communication Networks
  9. Shukla S, Hassan MF, Khan MK, Jung LT, Awang A
    PLoS One, 2019;14(11):e0224934.
    PMID: 31721807 DOI: 10.1371/journal.pone.0224934
    Fog computing (FC) is an evolving computing technology that operates in a distributed environment. FC aims to bring cloud computing features close to edge devices. The approach is expected to fulfill the minimum latency requirement for healthcare Internet-of-Things (IoT) devices. Healthcare IoT devices generate various volumes of healthcare data. This large volume of data results in high data traffic that causes network congestion and high latency. An increase in round-trip time delay owing to large data transmission and large hop counts between IoTs and cloud servers render healthcare data meaningless and inadequate for end-users. Time-sensitive healthcare applications require real-time data. Traditional cloud servers cannot fulfill the minimum latency demands of healthcare IoT devices and end-users. Therefore, communication latency, computation latency, and network latency must be reduced for IoT data transmission. FC affords the storage, processing, and analysis of data from cloud computing to a network edge to reduce high latency. A novel solution for the abovementioned problem is proposed herein. It includes an analytical model and a hybrid fuzzy-based reinforcement learning algorithm in an FC environment. The aim is to reduce high latency among healthcare IoTs, end-users, and cloud servers. The proposed intelligent FC analytical model and algorithm use a fuzzy inference system combined with reinforcement learning and neural network evolution strategies for data packet allocation and selection in an IoT-FC environment. The approach is tested on simulators iFogSim (Net-Beans) and Spyder (Python). The obtained results indicated the better performance of the proposed approach compared with existing methods.
    Matched MeSH terms: Computer Communication Networks
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links