Displaying publications 81 - 100 of 507 in total

Abstract:
Sort:
  1. Ismail R, Rahman AF
    J Clin Pharm Ther, 1990 Dec;15(6):411-7.
    PMID: 2089048
    We reviewed our data from 122 records of patients taking phenytoin for the treatment of various types of epilepsy and selected 15 (age range 10-43 years old) who were on phenytoin alone to calculate Michaelis-Menten pharmacokinetic parameters. The average Vm and Km for this age group was found to be 8.45 mg/kg/day and 6.72 mg/litre, respectively. Km was independent of age and weight. Vm correlated well with weight but there was no relationship with age.
    Matched MeSH terms: Phenytoin/pharmacokinetics*
  2. Low LE, Tan LT, Goh BH, Tey BT, Ong BH, Tang SY
    Int J Biol Macromol, 2019 Apr 15;127:76-84.
    PMID: 30639596 DOI: 10.1016/j.ijbiomac.2019.01.037
    Stimuli-responsive drug release and controlled delivery play crucial roles in enhancing the therapeutic efficacy and lowering over-dosage induced side effects. In this paper, we report magnetically-triggered drug release and in-vitro anti-colon cancer efficacy of Fe3O4@cellulose nanocrystal (MCNC)-stabilized Pickering emulsions containing curcumin (CUR). The loading efficiency of CUR in the micron-sized (≈7 μm) MCNC-stabilized Pickering emulsions (MCNC-PE) template was found to be 99.35%. The drug release profiles showed that the exposure of MCNC-PE to external magnetic field (EMF) (0.7 T) stimulated the release of bioactive from MCNC-PE achieving 53.30 ± 5.08% of the initial loading over a 4-day period. The MTT assay demonstrated that the CUR-loaded MCNC-PE can effectively inhibits the human colon cancer cells growth down to 18% in the presence of EMF. The formulation also resulted in 2-fold reduction on the volume of the 3-D multicellular spheroids of HCT116 as compared to the control sample. The MCNC particle was found to be non-toxic to brine shrimp up to a concentration of 100 μg/mL. Our findings suggested that the palm-based MCNC-PE could be a promising yet effective colloidal drug delivery system for magnetic-triggered release of bioactive and therapeutics.
    Matched MeSH terms: Delayed-Action Preparations/pharmacokinetics
  3. Roselt P, Cullinane C, Noonan W, Elsaidi H, Eu P, Wiebe LI
    Molecules, 2020 Dec 03;25(23).
    PMID: 33287202 DOI: 10.3390/molecules25235700
    Vitamin E, a natural antioxidant, is of interest to scientists, health care pundits and faddists; its nutritional and biomedical attributes may be validated, anecdotal or fantasy. Vitamin E is a mixture of tocopherols (TPs) and tocotrienols (T-3s), each class having four substitutional isomers (α-, β-, γ-, δ-). Vitamin E analogues attain only low concentrations in most tissues, necessitating exacting invasive techniques for analytical research. Quantitative positron emission tomography (PET) with an F-18-labeled molecular probe would expedite access to Vitamin E's biodistributions and pharmacokinetics via non-invasive temporal imaging. (R)-6-(3-[18F]Fluoropropoxy)-2,7,8-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-chromane ([18F]F-γ-T-3) was prepared for this purpose. [18F]F-γ-T-3 was synthesized from γ-T-3 in two steps: (i) 1,3-di-O-tosylpropane was introduced at C6-O to form TsO-γ-T-3, and (ii) reaction of this tosylate with [18F]fluoride in DMF/K222. Non-radioactive F-γ-T-3 was synthesized by reaction of γ-T-3 with 3-fluoropropyl methanesulfonate. [18F]F-γ-T-3 biodistribution in a murine tumor model was imaged using a small-animal PET scanner. F-γ-T-3 was prepared in 61% chemical yield. [18F]F-γ-T-3 was synthesized in acceptable radiochemical yield (RCY 12%) with high radiochemical purity (>99% RCP) in 45 min. Preliminary F-18 PET images in mice showed upper abdominal accumulation with evidence of renal clearance, only low concentrations in the thorax (lung/heart) and head, and rapid clearance from blood. [18F]F-γ-T-3 shows promise as an F-18 PET tracer for detailed in vivo studies of Vitamin E. The labeling procedure provides acceptable RCY, high RCP and pertinence to all eight Vitamin E analogues.
    Matched MeSH terms: Antioxidants/pharmacokinetics; Fluorides/pharmacokinetics; Fluorine Radioisotopes/pharmacokinetics; Vitamin E/pharmacokinetics*; Molecular Probes/pharmacokinetics; gamma-Tocopherol/pharmacokinetics; Tocotrienols/pharmacokinetics*
  4. Mohd Zaffarin AS, Ng SF, Ng MH, Hassan H, Alias E
    Int J Nanomedicine, 2020;15:9961-9974.
    PMID: 33324057 DOI: 10.2147/IJN.S276355
    Vitamin E belongs to the family of lipid-soluble vitamins and can be divided into two groups, tocopherols and tocotrienols, with four isomers (alpha, beta, gamma and delta). Although vitamin E is widely known as a potent antioxidant, studies have also revealed that vitamin E possesses anti-inflammatory properties. These crucial properties of vitamin E are beneficial in various aspects of health, especially in neuroprotection and cardiovascular, skin and bone health. However, the poor bioavailability of vitamin E, especially tocotrienols, remains a great limitation for clinical applications. Recently, nanoformulations that include nanovesicles, solid-lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and polymeric nanoparticles have shown promising outcomes in improving the efficacy and bioavailability of vitamin E. This review focuses on the pharmacological properties and pharmacokinetics of vitamin E and current advances in vitamin E nanoformulations for future clinical applications. The limitations and future recommendations are also discussed in this review.
    Matched MeSH terms: Vitamin E/pharmacokinetics*
  5. Premakumar CM, Turner MA, Morgan C
    Nutr Rev, 2019 12 01;77(12):878-889.
    PMID: 31504841 DOI: 10.1093/nutrit/nuz049
    CONTEXT: Very preterm neonates (VPNs) are unable to digest breast milk and therefore rely on parenteral nutrition (PN) formulations. This systematic review was prepared following PRISMA-P 2015 guidelines. For the purpose of this review, desirable mean plasma arginine concentration is defined as ≥80 micromoles/L.

    OBJECTIVE: The review was performed to answer the following research question: "In VPNs, are high amounts of arginine in PN, compared with low amounts of arginine, associated with appropriate circulating concentrations of arginine?" Therefore, the aims were to 1) quantify the relationship between parenteral arginine intakes and plasma arginine concentrations in PN-dependent VPNs; 2) identify any features of study design that affect this relationship; and 3) estimate the target parenteral arginine dose to achieve desirable preterm plasma arginine concentrations.

    DATA SOURCES: The PubMed, Scopus, Web of Science, and Cochrane databases were searched regardless of study design; review articles were not included.

    DATA EXTRACTION: Only articles that discussed amino acid (AA) intake and measured plasma AA profile post PN in VPNs were included. Data were obtained using a data extraction checklist that was devised for the purpose of this review.

    DATA ANALYSIS: Twelve articles met the inclusion criteria. The dose-concentration relationship of arginine content (%) and absolute arginine intake (mg/(kg × d)) with plasma arginine concentrations showed a significant positive correlation (P < 0.001).

    CONCLUSION: Future studies using AA solutions with arginine content of 17%-20% and protein intakes of 3.5-4.0 g/kg per day may be needed to achieve higher plasma arginine concentrations.

    Matched MeSH terms: Arginine/pharmacokinetics
  6. Yap SP, Julianto T, Wong JW, Yuen KH
    J Chromatogr B Biomed Sci Appl, 1999 Dec 10;735(2):279-83.
    PMID: 10670741
    A simple high-performance liquid chromatographic method using fluorescence detection was developed for the determination of vitamin E especially delta-, gamma- and alpha-tocotrienols in human plasma. The method entailed direct injection of plasma sample after deproteinization using a 3:2 mixture of acetonitrile-tetrahydrofuran. The mobile phase comprised 0.5% (v/v) of distilled water in methanol. Analyses were run at a flow-rate of 1.5 ml/min with the detector operating at an excitation wavelength of 296 nm and emission wavelength of 330 nm. This method is specific and sensitive, with a quantification limit of approximately 40, 34 and 16 ng/ml for alpha-, gamma- and delta-tocotrienol, respectively. The mean absolute recovery values were about 98% while the within-day and between-day relative standard deviation and percent error values of the assay method were all less than 12.0% for alpha-, gamma- and delta-tocotrienol. The calibration curve was linear over a concentration range of 40-2500, 30-4000 and 16-1000 ng/ml for alpha-, gamma- and delta-tocotrienol, respectively. Application of the method in a bioavailability study for determination of the above compounds was also demonstrated.
    Matched MeSH terms: Vitamin E/pharmacokinetics
  7. Wong CF, Peh KK, Yuen KH
    J Chromatogr B Biomed Sci Appl, 1998 Oct 23;718(1):205-10.
    PMID: 9832378
    A simple high-performance liquid chromatographic method was developed for the determination of ranitidine in human plasma. Prior to analysis, ranitidine and the internal standard (metoprolol) were extracted from alkalinized plasma samples using dichloromethane. The mobile phase was 0.05 M potassium dihydrogenphosphate-acetonitrile (88:12, v/v) adjusted to pH 6.5. Analysis was run at a flow-rate of 1.3 ml/min and at a detection wavelength of 229 nm. The method is sensitive with a detection limit of 1 ng/ml at a signal-to-noise ratio of 3:1, while the quantification limit was set at 15 ng/ml. The calibration curve was linear over a concentration range of 15-2000 ng/ml. Mean recovery value of the extraction procedure was about 90%, while the within-day and between-day coefficients of variation and percent error values of the assay method were all less than 15%.
    Matched MeSH terms: Ranitidine/pharmacokinetics
  8. Jamaludin A, Mohamad M, Navaratnam V, Selliah K, Tan SC, Wernsdorfer WH, et al.
    Br J Clin Pharmacol, 1988 Feb;25(2):261-3.
    PMID: 3358888
    The hydrochloride, sulphate and ethylcarbonate salts of quinine were given in single oral doses (600 mg base equivalent) to nine healthy male subjects according to a cross-over design. No statistically significant differences were noted in the plasma drug concentration-time profiles although inter- and intra-subject variation in AUC, Cmax and tmax values was appreciable. The ethylcarbonate salt may be preferred for use in paediatric patients because of its neutral taste.
    Matched MeSH terms: Quinine/pharmacokinetics*
  9. Yuen KH, Desmukh AA, Newton JM
    Pharm Res, 1993 Apr;10(4):588-92.
    PMID: 8483843
    A novel multiparticulate sustained-release theophylline formulation, which consisted of spherical drug pellets coated with a rate-controlling membrane, was evaluated in vivo. Two preparations that differ solely in the coat thickness, and hence rate of in vitro drug release, were studied in comparison with a solution of the drug. Both preparations produced serum concentration profiles that are reflective of a slow and sustained rate of absorption. The in vivo release versus time profiles calculated using a deconvolution procedure showed that the two preparations differed in the rate but not the extent of drug release. Satisfactory correlation was also obtained between the in vivo and the in vitro results. When the two preparations were further compared using the parameters, time to reach peak concentration (Tp), peak concentration (Cp), and total area under the serum concentration versus time curves (AUC), a statistically significant difference was observed in the Tp and Cp values but not the AUC values, suggesting that the preparations differed in the rate but not the extent of absorption. In addition, the extent of absorption from both preparations was comparable to that obtained with the drug solution.
    Matched MeSH terms: Theophylline/pharmacokinetics*
  10. Agatonovic-Kustrin S, Alany RG
    Pharm Res, 2001 Jul;18(7):1049-55.
    PMID: 11496944
    PURPOSE: A genetic neural network (GNN) model was developed to predict the phase behavior of microemulsion (ME), lamellar liquid crystal (LC), and coarse emulsion forming systems (W/O EM and O/W EM) depending on the content of separate components in the system and cosurfactant nature.

    METHOD: Eight pseudoternary phase triangles, containing ethyl oleate as the oil component and a mixture of two nonionic surfactants and n-alcohol or 1,2-alkanediol as a cosurfactant, were constructed and used for training, testing, and validation purposes. A total of 21 molecular descriptors were calculated for each cosurfactant. A genetic algorithm was used to select important molecular descriptors, and a supervised artificial neural network with two hidden layers was used to correlate selected descriptors and the weight ratio of components in the system with the observed phase behavior.

    RESULTS: The results proved the dominant role of the chemical composition, hydrophile-lipophile balance, length of hydrocarbon chain, molecular volume, and hydrocarbon volume of cosurfactant. The best GNN model, with 14 inputs and two hidden layers with 14 and 9 neurons, predicted the phase behavior for a new set of cosurfactants with 82.2% accuracy for ME, 87.5% for LC, 83.3% for the O/W EM, and 91.5% for the W/O EM region.

    CONCLUSIONS: This type of methodology can be applied in the evaluation of the cosurfactants for pharmaceutical formulations to minimize experimental effort.

    Matched MeSH terms: Surface-Active Agents/pharmacokinetics
  11. Yuen KH, Peh KK, Billa N, Chan KL, Toh WT
    Drug Dev Ind Pharm, 1998 Feb;24(2):193-6.
    PMID: 15605452
    The bioavailability of a generic preparation of acyclovir (Avorax) was compared with the innovator product, Zovirax. Twelve healthy volunteers participated in the study, conducted according to a randomized, two-way crossover design. The preparations were compared using the parameters area under the plasma concentration time curve (AUC(0-infinity), peak plasma concentration (Cmax), and time to reach peak plasma concentration (Tmax). No statistically significant difference was observed between the Tmax or the logarithmic transformed AUC(0-infinity) and C(max) values of the two preparations. In addition, the 90% confidence interval for the ratio of the logarithmic transformed AUC(0-infinity) values of Avorax over those of Zovirax was found to lie between 0.85 and 1.06, while that of the logarithmic transformed Cmax values was between 0.95 and 1.25, being within the bioequivalence limit of 0.80-1.25. Moreover, the elimination rate constant (k(e)), elimination half-life (t(1/2)), and apparent volume of distribution (Vd) values obtained with the two preparations were comparable and not significantly different statistically.
    Matched MeSH terms: Acyclovir/pharmacokinetics*
  12. Peh KK, Wong CF, Yuen KH
    Drug Dev Ind Pharm, 2000 Apr;26(4):447-50.
    PMID: 10769787
    Lipophilicity was evaluated as a possible mechanism for drug retardation from a glyceryl monostearate matrix system. Lipophilicity of the glyceryl monostearate matrix system was studied using contact angle measurement of water droplets on the surface of compressed disks, extrudate ascension of water, and movement of water through a powder mixture packed in a high-performance liquid chromatographic (HPLC) column. Increase in glyceryl monostearate content resulted in an increase in water droplet contact angle, decrease in the rate of water ascending the extrudate, and increase in the pressure values as a function of flow rate of water moving through the powder mixture. These could be due to the increase in lipophilicity of the matrix, rendering the matrix less wettable. As a result, the rate of water penetration into the matrix decreased, and the drug release could be sustained.
    Matched MeSH terms: Glycerides/pharmacokinetics*
  13. Abdullah AS, Baggot JD
    Vet Res Commun, 1988;12(6):441-6.
    PMID: 3222919
    The disposition kinetics and cumulative urinary excretion of sulfamethazine were compared in goats fed normally (control) and following a 72-hour period of starvation (fasting). The only pharmacokinetic parameter which showed a statistically significant difference between the two groups was the body (systemic) clearance. This decreased from 2.26 +/- 0.28 ml/min.kg (means +/- SD, n = 6) in the control group to 1.16 +/- 0.54 ml/min.kg in the fasting group (p less than 0.01). Since the apparent volume of distribution was not affected by starvation, the decreased clearance was attributed to slower metabolism of the drug. Because of the analytical method used to measure sulfamethazine concentrations in plasma and urine, no conclusion could be drawn as to whether the rates of hydroxylation or of acetylation, or both metabolic pathways were decreased in the starved condition.
    Matched MeSH terms: Sulfamethazine/pharmacokinetics*
  14. Sanusi MSM, Hassan WMSW, Hashim S, Ramli AT
    Appl Radiat Isot, 2021 Aug;174:109791.
    PMID: 34062400 DOI: 10.1016/j.apradiso.2021.109791
    Terrestrial radioactivity monitoring of 238U and 232Th series, and 40K in soil is an essential practice for radioactivity and radiation measurement of a place. In conventional practice, only basic data can be in-situ measured using a survey instrument, for example radioactivity concentration in soil and ambient dose equivalent rate. For other physical quantities, for example organ absorbed dose and organ equivalent dose, the measurement is impossible to be performed and can only be computed using Monte Carlo radiation transport simulations. In the past, most of the works only focused on calculating air-kerma-to-effective dose conversion factors. However, the information on organ dose conversion factors is scarcely documented and reported. This study was conducted to calculate organ absorbed and tissue-weighted equivalent dose conversion factors as a result of exposure from terrestrial gamma radiation. Series of organ dose conversion factors is produced based on computations from Monte Carlo MCNP5 simulations using modelled gamma irradiation geometry and established adult MIRD phantom. The study found out that most of the radiation exposed organs absorb energy at comparable rates, except for dense and superficial tissues i.e., skeleton and skin, which indicated slightly higher values. The good agreement between this work and previous studies demonstrated that our gamma irradiation geometry and modelling of gamma radiation sources are adequate. Therefore, the proposed organ dose conversion factors from this study are reasonably acceptable for dose estimation in environmental radioactivity monitoring practices.
    Matched MeSH terms: Soil Pollutants, Radioactive/pharmacokinetics*
  15. Chen HJ, Dai FJ, Chang CR, Lau YQ, Chew BS, Chau CF
    J Food Drug Anal, 2019 10;27(4):869-875.
    PMID: 31590758 DOI: 10.1016/j.jfda.2019.06.005
    In the present study, the influences of diets (i.e. chow and AIN-93 diets) on the interpretation of various fecal parameters including viable microbiota, moisture, weight, and short-chain fatty acids in rats fed different amounts of inulin (0.5-2 g/kg). Eight groups of rats (n = 8/group) were fed, for 4 weeks, chow or AIN-93 diets with or without inulin supplementation. Fecal samples were analyzed for different fecal parameters. After a 2-week adaptation, apparent differences in some fecal parameters were observed between the chow and AIN-93 diet groups. Throughout the 4-week intervention period, significantly (p 
    Matched MeSH terms: Inulin/pharmacokinetics*
  16. Albitar O, Harun SN, Ballouze R, Mohamed Noor DA, Sheikh Ghadzi SM
    Ther Drug Monit, 2022 Apr 01;44(2):282-289.
    PMID: 34334682 DOI: 10.1097/FTD.0000000000000916
    BACKGROUND: Cyclosporine is an essential component of many immunosuppressive regimens. However, its pharmacokinetic and pharmacodynamic (PKPD) modeling has not been widely investigated. This study aims to develop a time-dissociated PKPD model of cyclosporine in renal transplant patients.

    METHODS: Medical records of renal transplant patients at Penang General Hospital were retrospectively analyzed. A time-dissociated PKPD model with covariate effects was developed using NONMEM to evaluate renal graft function response, quantified as estimated glomerular filtration rate (eGFR), toward the cyclosporine cumulative exposure (area under the concentration-time curve). The final model was integrated into a tool to predict the potential outcome. Individual eGFR predictions were evaluated based on the clinical response recorded as acute rejection/nephrotoxicity events.

    RESULTS: A total of 1256 eGFR readings with 2473 drug concentrations were obtained from 107 renal transplant patients receiving cyclosporine. An Emax drug effect with a linear drug toxicity model best described the data. The baseline renal graft level (E0), maximum effect (Emax), area under the concentration-time curve achieving 50% of the maximum effect, and nephrotoxicity slope were estimated as 12.9 mL·min-1·1.73 m-2, 50.7 mL·min-1·1.73 m-2, 1740 ng·h·mL-1, and 0.00033, respectively. The hemoglobin level was identified as a significant covariate affecting the E0. The model discerned acute rejection from nephrotoxicity in 19/24 cases.

    CONCLUSIONS: A time-dissociated PKPD model successfully described a large number of observations and was used to develop an online tool to predict renal graft response. This may help discern early rejection from nephrotoxicity, especially for patients unwilling to undergo a biopsy or those waiting for biopsy results.

    Matched MeSH terms: Immunosuppressive Agents/pharmacokinetics
  17. Feroz SR, Mohamad SB, Bakri ZS, Malek SN, Tayyab S
    PLoS One, 2013;8(10):e76067.
    PMID: 24116089 DOI: 10.1371/journal.pone.0076067
    Interaction of a pharmacologically important flavonoid, pinostrobin (PS) with the major transport protein of human blood circulation, human serum albumin (HSA) has been examined using a multitude of spectroscopic techniques and molecular docking studies. Analysis of the fluorescence quenching data showed a moderate binding affinity (1.03 × 10(5) M(-1) at 25°C) between PS and HSA with a 1∶1 stoichiometry. Thermodynamic analysis of the binding data (ΔS = +44.06 J mol(-1) K(-1) and ΔH = -15.48 kJ mol(-1)) and molecular simulation results suggested the involvement of hydrophobic and van der Waals forces, as well as hydrogen bonding in the complex formation. Both secondary and tertiary structural perturbations in HSA were observed upon PS binding, as revealed by intrinsic, synchronous, and three-dimensional fluorescence results. Far-UV circular dichroism data revealed increased thermal stability of the protein upon complexation with PS. Competitive drug displacement results suggested the binding site of PS on HSA as Sudlow's site I, located at subdomain IIA, and was well supported by the molecular modelling data.
    Matched MeSH terms: Flavanones/pharmacokinetics*
  18. Nadeem M, Ahmad M, Saeed MA, Shaari A, Riaz S, Naseem S, et al.
    IET Nanobiotechnol, 2015 Jun;9(3):136-41.
    PMID: 26023157 DOI: 10.1049/iet-nbt.2014.0012
    Nanoparticles as solid colloidal particles are extensively studied and used as anticancer drug delivery agents because of their physical properties. This current research aims to prepare water base suspension of uncoated iron oxide nanoparticles and their biodistribution study to different organs, especially the brain, by using a single photon emission computed tomography gamma camera. The water-based suspension of iron oxide nanoparticles was synthesised by a reformed version of the co-precipitation method and labelled with Tc99m for intravenous injection. The nanoparticles were injected without surface modification. X-ray diffraction (XRD), energy dispersive spectrometry (EDS) and transmission electron microscope (TEM) techniques were used for characterisation. Peaks of XRD and EDS indicate that the particles are magnetite and exist in aqueous suspension. The average diameter of iron oxide nanoparticles without any surface coating determined by TEM is 10 nm. These particles are capable of evading the reticuloendothelial system and can cross the blood-brain barrier in the rabbit. The labelling efficiency of iron oxide nanoparticles labelled with Tc99m is 85%, which is good for the biodistribution study. The sufficient amount of iron oxide nanoparticles concentration in the brain as compared with the surrounding soft tissues and their long blood retention time indicates that the water-based suspension of iron oxide nanoparticles may be an option for drug delivery into the brain.
    Matched MeSH terms: Technetium/pharmacokinetics*
  19. Tasnim J, Hashim NM, Han HC
    Cell Biochem Funct, 2024 Mar;42(2):e3967.
    PMID: 38480622 DOI: 10.1002/cbf.3967
    A drug interaction is a condition in which two or more drugs are taken at the same time. Type 2 diabetes mellitus is a significant contributor to polypharmacy. Proton pump inhibitors (PPIs) are often prescribed in combination with metformin or DPP-4 inhibitors (sitagliptin, saxagliptin, linagliptin, and alogliptin) or a combined dose of metformin and DPP-4 inhibitor to treat gastritis in diabetic patients. This review article mainly focused on evaluating the potential drug-drug interactions (DDIs) between PPIs (i.e. esomeprazole, lansoprazole, omeprazole, pantoprazole, and rabeprazole) with metformin and PPIs with DPP-4 inhibitors. The findings demonstrated the existence of pharmacokinetic and pharmacodynamic DDIs between the aforementioned PPIs with metformin and DPP-4 inhibitors, which could impact the biological activities (i.e., hypoglycemia) of these drugs. Moreover, this review suggested that esomeprazole could be the best drug in the PPI group to be prescribed simultaneously with metformin and DPP-4 inhibitors, as most of the antidiabetic drugs of this study did not show any interaction with esomeprazole. The findings of this study also revealed that both antidiabetic drugs and PPIs could have positive interactions as PPIs have the potential to lessen the gastrointestinal side effects of metformin and DPP-4 inhibitors. To achieve the greatest therapeutic impact with the fewest side effects, careful dose control of these drugs is required. So, more extensive research on both human and animal subjects are needed to ascertain the veracity of this hypothesis.
    Matched MeSH terms: Proton Pump Inhibitors/pharmacokinetics
  20. Kirubakaran R, Uster DW, Hennig S, Carland JE, Day RO, Wicha SG, et al.
    Br J Clin Pharmacol, 2023 Mar;89(3):1162-1175.
    PMID: 36239542 DOI: 10.1111/bcp.15566
    AIM: Existing tacrolimus population pharmacokinetic models are unsuitable for guiding tacrolimus dosing in heart transplant recipients. This study aimed to develop and evaluate a population pharmacokinetic model for tacrolimus in heart transplant recipients that considers the tacrolimus-azole antifungal interaction.

    METHODS: Data from heart transplant recipients (n = 87) administered the oral immediate-release formulation of tacrolimus (Prograf®) were collected. Routine drug monitoring data, principally trough concentrations, were used for model building (n = 1099). A published tacrolimus model was used to inform the estimation of Ka , V2 /F, Q/F and V3 /F. The effect of concomitant azole antifungal use on tacrolimus CL/F was quantified. Fat-free mass was implemented as a covariate on CL/F, V2 /F, V3 /F and Q/F on an allometry scale. Subsequently, stepwise covariate modelling was performed. Significant covariates influencing tacrolimus CL/F were included in the final model. Robustness of the final model was confirmed using prediction-corrected visual predictive check (pcVPC). The final model was externally evaluated for prediction of tacrolimus concentrations of the fourth dosing occasion (n = 87) from one to three prior dosing occasions.

    RESULTS: Concomitant azole antifungal therapy reduced tacrolimus CL/F by 80%. Haematocrit (∆OFV = -44, P 

    Matched MeSH terms: Immunosuppressive Agents/pharmacokinetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links