Displaying publications 81 - 100 of 161 in total

Abstract:
Sort:
  1. Kamarulzaman NH, Le-Minh N, Stuetz RM
    Talanta, 2019 Jan 01;191:535-544.
    PMID: 30262095 DOI: 10.1016/j.talanta.2018.09.019
    Different extraction procedures were evaluated to assess their potential for measuring volatile organic compounds (VOCs) from raw rubber materials. Four headspace sampling techniques (SHS, DHS, HS-SPME and µ-CTE) were studied. Each method was firstly optimised to ensure their reliability in performance. Passive sampling was also compared as a rapid identification of background VOCs. 352 VOCs were identified, 71 from passive sampling and 281 from active headspace sampling, with 62 not previously reported (hexanenitrile, octanone, decanal, indole, aniline, anisole, alpha-pinene as well as pentanol and butanol). The volatiles belonged to a broad range of chemical classes (ketones, aldehydes, aromatics, acids, alkanes, alcohol and cyclic) with their thermal effects (lower boiling points) greatly affecting their abundance at a higher temperature. Micro-chamber (µ-CTE) was found to be the most suitability for routine assessments due to its operational efficiency (rapidity, simplicity and repeatability), identifying 115 compounds from both temperatures (30 °C and 60 °C). Whereas, HS-SPME a widely applied headspace technique, only identified 75 compounds and DHS identified 74 VOCs and SHS only 17 VOCs. Regardless of the extraction technique, the highest extraction efficiency corresponded to aromatics and acids, and the lowest compound extraction were aldehyde and hydrocarbon. The interaction between techniques and temperature for all chemical groups were evaluated using two-way ANOVA (p-value is 0.000197) explaining the highly significant interactions between factors.
    Matched MeSH terms: Rubber
  2. Aisami Abubakar, Mohd Yunus Shukor
    MyJurnal
    Environmental pollution is one of the major concerns in the 21st century; where billions of tonnes
    of harmful chemicals are produced by industries such as petroleum, paints, food, rubber, and
    plastic. Phenol and its derivatives infiltrate the ecosystems and have become one of the top major
    pollutants worldwide. This review covers the major aspects of immobilization of phenoldegrading
    bacteria as a method to improve phenol bioremediation. The use of various forms of
    immobilization matrices is discussed along with the advantages and disadvantages of each of the
    immobilization matrices especially when environmental usage is warranted. To be used as a
    bioremediation tool, the immobilized system must not only be effective, but the matrices must be
    non-toxic, non-polluting and if possible non-biodegradable. The mechanical, biological and
    chemical stability of the system is paramount for long-term activity as well as price is an
    important factor when the very large scale is a concern. The system must also be able to tolerate
    high concentration of other toxicants especially heavy metals that form as co-contaminants, and
    most immobilized systems are geared towards this last aspect as immobilization provides
    protection from other contaminants.
    Matched MeSH terms: Rubber
  3. Suzy Aziziyana Saili, Rosila Bee Mohd Hussain, Khairulnizam Mat Karim
    MyJurnal
    A plural society existence due to economic policy is an outcome of foreign colonization. Due to the
    British economic policy, Malaya saw the influx two foreign ethnic; Chinese and Indian, working in tin
    mining and rubber estates respectively. Early conflict involving the Malays and these foreign workers
    is inevitable which is evident during both the Japanese intervention and the British colonization. The
    objective of this paper is to review the role and responsibilities of Communities Liaison Committee in
    pioneering social cohesion between the three main ethnics in Malaya during the crucial time of
    Japanese intervention, British colonization, communist threat and the declaration of emergency. Before
    CLC, a cooperation was initiated by AMCJA-PUTERA coalition but was short lived due to the absence
    of support from the British and lack of bargaining between Malays and Non-Malays. CLC received a
    full patronage of the British as the pioneer of social cohesion in Malaya, especially when it was able to call upon the three main ethnic in its discussion of bargaining and negotiation or what is widely known
    as the social contract, as well as practicing political power sharing.
    Matched MeSH terms: Rubber
  4. Ishak Ahmad, Mohd Khairil Saat, Ibrahim Abdullah, Azizah Baharum
    Blends of fibre-reinforced rubber based on natural rubber-thermoplastic (NR/LLDPE) reinforced by aramid fibre have been done using melt blending process. Two different processing methods were used; internal mixer and extrusion compounding in twin screw extruder. Twaron loading in the system was varied from 0 to 30%. It was found that increasing the amount of aramid fibre led to an increase in the tensile strength, tensile modulus and hardness of the composites while the strain decreased rapidly. The results showed that the optimum composition of filler loading in NR/LLDPE blend is 20%. The ,echanical behaviour was caused by the strong Twaron-matrices interaction in the composites and effective stress concentrating function of Twaron. Composites prepared using the twin-screw extruder have a higher tensile strength and tensile using the twin-screw extruder have a higher tensile stength and tensile modulus but lower impact strength compared to those prepared using internal mixer. Study of the fracture surface by scanning electron microscopy showed that the composite prepared using the internal mixer produced random fiber orientation while the twin-screw extruder produced the fibers aligned to the longitudinal direction. The results indicate that the mechanical properties of the composite were significantly influenced by the processing technique.
    Penyediaan komposit getah asli termoplastik daripada NR/LLDPE yang diperkuat gentian Twaron telah dijalankan melalui proses adunan leburan. Dua kaedah penyediaan yang berbeza digunakan iaitu menggunakan mesin pencampur dalaman manakala kaedah kedua menggunakan pengekstrud skru kembar. Kandungan Twaron di dalam komposit telah diubah daripada 0 hingga 30%. Keputusan menunjukkan bahawa penambahan Twaron telah meningkatkan nilai tegasan maksima, modulus Young dan kekuatan hentaman komposit tetapi menurunkan nilai terikan maksima. Kandungan Twaron yang optimum adalah 20%. Kehadiran Twaron telah membentuk satu jaringan saling tindak gentian-matriks menyebabkan kekuatan regangan komposit meningkat. Twaron juga berfungsi sebagai penyerap hentaman yang berkesan. Penyediaan komposit menggunakan pengekstrud skru berkembar telah menghasilkan nilai kekuatan regangan yang lebih tinggi berbanding penggunaan pencampur dalaman sebaliknya kekuatan hentaman yang lebih rendah. Kajian morfologi menggunakan mikroskop imbasan elektron mendapati komposit yang disediakan menggunakan pencampur dalaman menghasilkan gentian dengan orientasi rawak manakala pengekstrud skru kembar menghasilkan orientasi gentian yang selari. Keputusan ini menunjukkan bahawa sifat mekanik komposit NR/LLDPE yang diperkuat Twaron sangat dipengaruhi oleh teknik pemprosesan.
    Matched MeSH terms: Rubber
  5. Chai CK, Md. Soot Ahmad, Wan Manshol W. Zin
    Electron beam vulcanization of natural rubber latex has been developed as an alternative to the conventional sulphur vulcanization method. This study aimed at determining the effect of electron beam dose, beam current and centrifugation to the tensile properties of field natural rubber latex. Irradiation dose and beam current ranged from 50 to 300 kGy and 1 to 15 mA respectively. The determination of tensile properties were done on cast film prepared from irradiated field latex before and after centrifugation. It was found that tensile properties increased with radiation dose but decreased with beam current. Rubber films made from centrifuged irradiated field latex were softer and showed higher tensile strength.
    Matched MeSH terms: Rubber
  6. Seuk-Yen Phoong, Mohd Tahir Ismail
    Sains Malaysiana, 2015;44:1033-1039.
    Over the years, maximum likelihood estimation and Bayesian method became popular statistical tools in which applied to fit finite mixture model. These trends begin with the advent of computer technology during the last decades. Moreover, the asymptotic properties for both statistical methods also act as one of the main reasons that boost the popularity of the methods. The difference between these two approaches is that the parameters for maximum likelihood estimation are fixed, but unknown meanwhile the parameters for Bayesian method act as random variables with known prior distributions. In the present paper, both the maximum likelihood estimation and Bayesian method are applied to investigate the relationship between exchange rate and the rubber price for Malaysia, Thailand, Philippines and Indonesia. In order to identify the most plausible method between Bayesian method and maximum likelihood estimation of time series data, Akaike Information Criterion and Bayesian Information Criterion are adopted in this paper. The result depicts that the Bayesian method performs better than maximum likelihood estimation on financial data.
    Matched MeSH terms: Rubber
  7. Rahmadini Syafri, Ishak Ahmad, Ibrahim Abdullah
    Sains Malaysiana, 2011;40:1123-1127.
    Surface modification of rice husk (RH) with alkali pre-treatment (NaOH solution 5% w/v) was carried out at the initial state to investigate the effect of surface treatment of fibre on the surface interaction between fibre and rubber. Further modification of RH surfaces after alkali treatment was using Liquid Epoxidized Natural Rubber (LENR) coating at three concentrations, 5%, 10%, and 20% wt LENR solution in toluene. Interfacial morphology and chemical reactions between RH fibre and rubber were analyzed by FTIR and Scanning Electron Microscope (SEM). It was found that 10% wt LENR solution gave the optimum interaction between fibre and rubber. Matrix and composite blends derived from 60% natural rubber (NR), 40% high density polyethylene (HDPE) reinforced with RH fibre were prepared using an internal mixer (Brabender Plasticoder). Result showed that pre-treatment of RH treated with 5% NaOH followed by treatment with 10% LENR solution given the maximum interaction between fibre and matrix that gave rise to better mechanical properties of the composites.
    Matched MeSH terms: Rubber
  8. Nazwa Jon, Ibrahim Abdullah, Rizafizah Othaman
    Sains Malaysiana, 2013;42:469-473.
    The presence of pores plays an important role for many membrane processes especially in ultrafiltration and microfiltration. Epoxidised natural rubber (ENR)/polyvinyl chloride (PVC) membranes filled with two types of silica fillers were prepared via simultaneous solvent exchange and evaporation of solvent technique. Two types of silica, i.e. microsilica (microcrystalline
    silica powder) and nanosilica (generated from tetraethoxysilane (TEOS)) were used. The chemical composition, morphology and mechanical stability of the membranes were studied. Both types of silica showed good interaction with the membrane matrix. The formation of pores depended on the size of silica particles added. Microsilica produced large pores while insitu generated nanosilica produced nanosized pores. The mechanical properties of membrane improved with the addition
    of silica. The tensile strength increased from 10.6 MPa to 17.8 MPa and 14.5 MPa for nanosilica and microsilica filled membrane while the tensile modulus increased from 1.6 MPa to 3.8 MPa and 3.4 MPa, respectively. Thus, both types of silica acted as a filler as well as pore forming agent for the ENR/PVC membrane.
    Matched MeSH terms: Rubber
  9. Zainal N, Mohamed N, Idris R
    Sains Malaysiana, 2013;42:481-485.
    In this work, epoxidized natural rubber 50 (ENR-50) has been used as a host polymer for the preparation of electrolyte system. Attenuated total reflection-fourier transform infrared spectroscopic analyses showed the presence of lithium saltENR interactions. The glass transition temperature displayed an increasing trend with the increase in salt concentration indicating that the ionic conductivity was not influenced by segmental motion of the ENR-50 chains. The increase in
    glass transition temperature with the addition of salt was due to the formation of transient cross-linking between ENR-50 chains via the coordinated interaction between ENR-50 chains and salt. The highest room temperature ionic conductivity obtained was in the order of 10-5 S cm-1 for the film containing 50 wt% of lithium salt. The ionic conductivity of this electrolyte system increased with increasing temperature and obeyed the Vogel-Tamman-Fulcher behavior. The increase in ionic conductivity of the electrolyte system with salt concentration could also be correlated to the charge carriers concentration and/or migration rate of charge carriers.
    Matched MeSH terms: Rubber
  10. Mat Uzir Wahi, Azman Hassan, Akos Noel Ibrahim, Nurhayati Ahmad Zawawi, Kunasegeran K
    Sains Malaysiana, 2015;44:1615-1623.
    Polylactic acid (PLA)/Epoxidized natural rubber (ENR-50) blends were prepared by melt extrusion followed by injection
    molding to fabricate the test samples. The effect of ENR-50 loadings on the morphological, mechanical, chemical
    resistance and water absorption properties of the blends were studied using standard methods. The toughness of the
    blend improved with ENR loading up to 20 wt. % but flexural and tensile strength decreased. The balanced mechanical
    properties were obtained at 20 wt. % ENR-50 loading. SEM showed good distribution and increased ENR particle size
    as ENR content increased from 10 to 30 wt. %. The differential scanning calorimeter (DSC) showed a steady drop in
    crystallization temperature (Tc
    ) as ENR content increases while the glass transition temperature (Tg
    ) remained unchanged.
    Water absorption was observed to increase with ENR loadings. Increase in ENR content was also observed to reduce the
    chemical resistance of the blends.
    Matched MeSH terms: Rubber
  11. Mou‘ad A.Tarawneh, Sahrim Hj. Ahmad, Ku Zarina K, Ibrahim N. Hassan, Yu Lih jiun, Moayad Husein Flaifel, et al.
    Sains Malaysiana, 2013;42:503-507.
    The main goal of this paper was to study the effect of ultrasonic treatment time on the mechanical properties of thermoplastic natural rubber(TPNR) reinforced with hybrid MWNTs-OMMT. The intercalation of TPNR enhancement into layers of clay by increasing the d-spacing was found using X-ray diffraction. The tensile properties of nanocomposites treated with ultrasonic increased when compared with untreated nanocomposites. The optimum ultrasonic treatment time was obtained at 3 h. The transmission electron microscope micrograph showed a combination of intercalated-exfoliated structure of the TPNR composites with organic clay and dispersion of MWNTs. The ultrasonic treatment can promote the dispersion of MWNTs-OMMT in TPNR and also improved the compatibility of hybrid filler and the TPNR matrix.
    Matched MeSH terms: Rubber
  12. Joohari IB, Giustozzi F
    Polymers (Basel), 2020 Apr 18;12(4).
    PMID: 32325743 DOI: 10.3390/polym12040945
    In this study, the mechanical and rheological properties of hybrid polymer-modified bitumen (PMB) have been investigated. For this purpose, nine different polymers-including crumb rubber, elastomers and plastomers at varying content-were studied to evaluate their mechanical performance as single polymers, first, and as a combination of two or more polymers as a hybrid polymer blend. Subsequently, the hybrid polymer blends were added in a relatively small percentage into the base bitumen to study its influence on the rheological performance of hybrid PMB. The mechanical properties identified from the analysis of the stress-strain curve of the single polymers were the Young's Modulus, tensile stress, and elongation at break. The chemical structure of the polymer hybrid blends was analysed using FTIR, followed by frequency sweep tests conducted using the dynamic shear rheometer (DSR) to determine the bitumen rheological properties. Results showed that hybrid PMB enhances the viscoelastic behaviour of bitumen at both low and high temperature compared to other PMBs only including single polymers.
    Matched MeSH terms: Rubber
  13. Anis S, Zainal ZA
    Bioresour Technol, 2013 Dec;150:328-37.
    PMID: 24185417 DOI: 10.1016/j.biortech.2013.10.010
    This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content.
    Matched MeSH terms: Rubber/chemistry*
  14. Chin KL, H'ng PS, Wong LJ, Tey BT, Paridah MT
    Bioresour Technol, 2010 May;101(9):3287-91.
    PMID: 20056407 DOI: 10.1016/j.biortech.2009.12.036
    Ethanolic fermentation using Saccharomyces cerevisiae was carried out on three types of hydrolysates produced from lignocelulosic biomass which are commonly found in Malaysia such as oil palm trunk, rubberwood and mixed hardwood. The effect of fermentation temperature and pH of hydrolysate was evaluated to optimize the fermentation efficiency which defined as maximum ethanol yield in minimum fermentation time. The fermentation process using different temperature of 25 degrees Celsius, 30 degrees Celsius and 40 degrees Celsius were performed on the prepared fermentation medium adjusted to pH 4, pH 6 and pH 7, respectively. Results showed that the fermentation time was significantly reduced with the increase of temperature but an adverse reduction in ethanol yield was observed using temperature of 40 degrees Celsius. As the pH of hydrolysate became more acidic, the ethanol yield increased. Optimum fermentation efficiency for ethanolic fermentation of lignocellulosic hydrolysates using S. cerevisiae can be obtained using 33.2 degrees Celsius and pH 5.3.
    Matched MeSH terms: Rubber/metabolism*
  15. Juhaida MF, Paridah MT, Mohd Hilmi M, Sarani Z, Jalaluddin H, Mohamad Zaki AR
    Bioresour Technol, 2010 Feb;101(4):1355-60.
    PMID: 19833509 DOI: 10.1016/j.biortech.2009.09.048
    A study was carried out to produce polyurethane (PU) as a wood laminating adhesive from liquefied kenaf core (LKC) polyols by reacting it with toluene-2,4-diisocyanate (TDI) and 1,4-butanediol (BDO). The LKC polyurethane (LKCPU) adhesive has a molecular weight (MW) of 2666, viscosity of 5370 mPa s, and solids content of 86.9%. The average shear strength of the rubberwood (RW) bonded with LKCPU adhesive was 2.9 MPa. Most of the sheared specimens experienced a total adhesive failure. The formation of air bubbles through the liberation of carbon dioxide was observed to reduce the adhesive penetration and bonding strength which was obviously seen on the sheared specimens. The percentage of catalyst used can be varied based on the usage and working time needed. Nonetheless, the physical properties of LKCPU produced in this work had shown good potential as edge-bonding adhesive.
    Matched MeSH terms: Rubber/chemistry
  16. Kumutha K, Alias Y
    Spectrochim Acta A Mol Biomol Spectrosc, 2006 May 15;64(2):442-7.
    PMID: 16530471
    Chemical modification of natural rubber (NR) has frequently been attempted to improve the performance in specific application. 30% poly(methyl metacrylate) (PMMA) grafted into NR (MG30) has been explored as a potential candidate for polymer electrolytes. The complexation effect of salt and plasticizer in polymer host electrolytes had been investigated using FTIR. The carbonyl stretch of MG30 locates at 1729 cm-1, with the addition of lithium trimethanesulfonate (LiCF3SO3) salt, new band evolves at lower frequency region at 1643-1645 cm-1. The nondegenerate vibrational mode of nus(SO3) of salted electrolytes appearing at 1031-1034 cm-1 comes from 'free' trimethanesulfonate anions and the 1040-1046 cm-1 absorption from the monodentate ion paired with triflates. These indicate MG30-salt interaction. When MG30 and ethylene carbonate (EC) formed film, the CH3 asymmetric bend of MG30 appearing at 1447cm-1 is shifted to 1449 cm-1 in the EC-polymer complex. The CO stretching at 1729 cm-1 also shifted to 1728 cm-1. Hence, the EC-MG30 system is complexed to each other. EC-LiCF3SO3 interactions are indicated by the shifting of CO bending band of EC from 718 cm-1 being shifted to 720 cm-1 in the complex. In Li+-EC interaction where the ring breathing region at 897 cm-1 in EC has shifted to 899 cm-1 in EC-salt spectrum. The band appearing at 1643-1645 cm-1 due to the coordination of Li+
    Matched MeSH terms: Rubber/chemistry*
  17. Lau NS, Makita Y, Kawashima M, Taylor TD, Kondo S, Othman AS, et al.
    Sci Rep, 2016 06 24;6:28594.
    PMID: 27339202 DOI: 10.1038/srep28594
    Hevea brasiliensis Muell. Arg, a member of the family Euphorbiaceae, is the sole natural resource exploited for commercial production of high-quality natural rubber. The properties of natural rubber latex are almost irreplaceable by synthetic counterparts for many industrial applications. A paucity of knowledge on the molecular mechanisms of rubber biosynthesis in high yield traits still persists. Here we report the comprehensive genome-wide analysis of the widely planted H. brasiliensis clone, RRIM 600. The genome was assembled based on ~155-fold combined coverage with Illumina and PacBio sequence data and has a total length of 1.55 Gb with 72.5% comprising repetitive DNA sequences. A total of 84,440 high-confidence protein-coding genes were predicted. Comparative genomic analysis revealed strong synteny between H. brasiliensis and other Euphorbiaceae genomes. Our data suggest that H. brasiliensis's capacity to produce high levels of latex can be attributed to the expansion of rubber biosynthesis-related genes in its genome and the high expression of these genes in latex. Using cap analysis gene expression data, we illustrate the tissue-specific transcription profiles of rubber biosynthesis-related genes, revealing alternative means of transcriptional regulation. Our study adds to the understanding of H. brasiliensis biology and provides valuable genomic resources for future agronomic-related improvement of the rubber tree.
    Matched MeSH terms: Rubber/metabolism*
  18. Yeang HY, Yusof F, Abdullah L
    Anal Biochem, 1995 Mar 20;226(1):35-43.
    PMID: 7785777
    Many proteins derived from the latex of Hevea brasiliensis that remain soluble in trichloroacetic acid (TCA) can be precipitated by phosphotungstic acid (PTA). A combination of 5% TCA and 0.2% PTA precipitates a wide range of proteins effectively even when they are present in low concentrations (below 1 microgram ml-1). In addition to its protein purification function, acid precipitation also increases the sensitivity of the subsequent protein assay by allowing the test sample to be concentrated. Another advantage of protein precipitation by TCA and PTA is that very small amounts of protein (of the order of 10 micrograms) can be repeatably recovered without the use of precipitate-bulking agents such as sodium deoxycholate. This general procedure of protein purification and concentration is simple and rapid, but the use of PTA may not be fully compatible with the Bradford protein assay. A modified Lowry microassay is described which enables about 3 micrograms ml-1 to be quantitated at the photometric absorbance of 0.05. When used in conjunction with protein concentration by precipitating with TCA/PTA, approximately 0.4 microgram ml-1 protein present in 6 ml of solution can be assayed.
    Matched MeSH terms: Rubber/analysis
  19. Makita Y, Ng KK, Veera Singham G, Kawashima M, Hirakawa H, Sato S, et al.
    DNA Res, 2017 Apr 01;24(2):159-167.
    PMID: 28431015 DOI: 10.1093/dnares/dsw056
    Natural rubber has unique physical properties that cannot be replaced by products from other latex-producing plants or petrochemically produced synthetic rubbers. Rubber from Hevea brasiliensis is the main commercial source for this natural rubber that has a cis-polyisoprene configuration. For sustainable production of enough rubber to meet demand elucidation of the molecular mechanisms involved in the production of latex is vital. To this end, we firstly constructed rubber full-length cDNA libraries of RRIM 600 cultivar and sequenced around 20,000 clones by the Sanger method and over 15,000 contigs by Illumina sequencer. With these data, we updated around 5,500 gene structures and newly annotated around 9,500 transcription start sites. Second, to elucidate the rubber biosynthetic pathways and their transcriptional regulation, we carried out tissue- and cultivar-specific RNA-Seq analysis. By using our recently published genome sequence, we confirmed the expression patterns of the rubber biosynthetic genes. Our data suggest that the cytoplasmic mevalonate (MVA) pathway is the main route for isoprenoid biosynthesis in latex production. In addition to the well-studied polymerization factors, we suggest that rubber elongation factor 8 (REF8) is a candidate factor in cis-polyisoprene biosynthesis. We have also identified 39 transcription factors that may be key regulators in latex production. Expression profile analysis using two additional cultivars, RRIM 901 and PB 350, via an RNA-Seq approach revealed possible expression differences between a high latex-yielding cultivar and a disease-resistant cultivar.
    Matched MeSH terms: Rubber/metabolism*
  20. Che Ab Aziz, Z.A.
    Ann Dent, 2008;15(2):67-70.
    MyJurnal
    Aim: To manufacture a clinical simulation apparatus for the undergraduates' endodontic radiography teaching Objectives: • To provide a model for teaching of parallax method using Kelly's forcep • To provide a model for undergraduates to practice radiographic localization employing parallax method. • To allow students to practice taking radiographs in a way that simulates the clinical situations with a good diagnostic quality Methods: Impressions of a dentate arch (maxillary and mandibullary) were used to form a stone cast. A section of the cast, in the area where the natural teeth were to be placed, is sectioned and removed. Three maxillary extracted teeth (canine, first and second premolar) were selected and mounted with acrylic resin at the sectioned area. The resin was cured in a light box. The arches were mounted in a phantom head with a placement of rubber cheek. The first premolar was isolated with rubber dam. The intraoral holder (Kelly's forcep) was attached to a robotic arm. The students were taught the correct angulations of the x-ray cone for the paralleling technique and parallax method using Kelly's forcep during root canal treatment. Results: All students managed to complete the exercise and were considered competent when they produced acceptable quality of radiographs. Conclusion: The model described was improvised from a model that has been used during the past 2 years for undergraduates' endodontic courses. It has been well accepted as it simulates the clinical situation more closely than was possible previously.
    Matched MeSH terms: Rubber; Rubber Dams
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links