Displaying publications 101 - 120 of 703 in total

Abstract:
Sort:
  1. Parichehreh R, Gheshlaghi R, Mahdavi MA, Kamyab H
    J Biotechnol, 2021 Nov 10;340:64-74.
    PMID: 34454961 DOI: 10.1016/j.jbiotec.2021.08.010
    Biodiesel, as a renewable and eco-friendly energy source that can be produced through algae oil esterification, has recently received much attention. Maximization of algal biomass and lipid content is crucial for commercial biodiesel production. In this study, Chlorella sp. PG96, a microalgal strain isolated from urban wastewater, was identified considering its morphological and molecular characteristics. Fractional factorial design (211-7) was employed to screen medium and environmental factors for achieving high lipid productivity. The effects of eleven factors including light intensity, light spectrum, aeration rate, temperature, salinity, NaHCO3, CO2, NaNO3, NH4Cl, MgSO4.7H2O, and K2HPO4 and their interactions on growth characteristics of Chlorella sp. PG96 (biomass and lipid production) were statistically assessed. Based on the experimental results, lipid productivity was at its maximum (54.19 ± 8.40 mglipid L-1 day-1) under a combination of high levels of all factors. The analysis also showed that physical parameters of light intensity and temperature were more effective on algal growth compared to nutritional parameters. Furthermore, nitrogen source of ammonium and carbon source of bicarbonate played more significant roles in biomass and lipid production, compared with nitrate and CO2, respectively. Although the effect of sulfur limitation on cellular growth was similar to phosphorus deficiency, S-limitation had a greater impact on lipid accumulation. The interaction between NaHCO3 and NH4Cl was the most prominent interaction affecting all responses. It is concluded that Chlorella sp. PG96 at a high level of light intensity and temperature (22500 Lux and 32 °C, respectively) can be a prospective candidate for biodiesel production.
    Matched MeSH terms: Biomass
  2. Wan Afifudeen CL, Aziz A, Wong LL, Takahashi K, Toda T, Abd Wahid ME, et al.
    Phytochemistry, 2021 Dec;192:112936.
    PMID: 34509143 DOI: 10.1016/j.phytochem.2021.112936
    The non-model microalga Messastrum gracile SE-MC4 is a potential species for biodiesel production. However, low biomass productivity hinders it from passing the life cycle assessment for biodiesel production. Therefore, the current study was aimed at uncovering the differences in the transcriptome profiles of the microalgae at early exponential and early stationary growth phases and dissecting the roles of specific differential expressed genes (DEGs) involved in cell division during M. gracile cultivation. The transcriptome analysis revealed that the photosynthetic integral membrane protein genes such as photosynthetic antenna protein were severely down-regulated during the stationary growth phase. In addition, the signaling pathways involving transcription, glyoxylate metabolism and carbon metabolism were also down-regulated during stationary growth phase. Current findings suggested that the coordination between photosynthetic integral membrane protein genes, signaling through transcription and carbon metabolism classified as prominent strategies during exponential growth stage. These findings can be applied in genetic improvement of M. gracile for biodiesel application.
    Matched MeSH terms: Biomass
  3. Lim YA, Khong NMH, Priyawardana SD, Ooi KR, Ilankoon IMSK, Chong MN, et al.
    Bioresour Technol, 2022 Mar;347:126733.
    PMID: 35074462 DOI: 10.1016/j.biortech.2022.126733
    Carbon capture and storage (CCS) via microalgae cultivations is getting renewed interest as climate change mitigation effort, owing to its excellent photosynthetic and CO2 fixation capability. Microalgae growth is monitored based on their biomass, cell concentrations and cell sizes. The key parametric relationships on microalgae growth under CO2 are absent in previous studies and this inadequacy hampers the design and scale-up of microalgae-based CCS. In this study, three representative microalgae species, Chlorella, Nostoc and Chlamydomonas, were investigated for establishing key correlations of cell concentrations and sizes towards their biomass fluctuations under CO2 influences of 0% to 20% volume ratios (v/v). This revealed that Chlorella and Chlamydomonas cell concentrations significantly contributed towards increasing biomass concentration under CO2 elevations. Chlorella and Nostoc cell sizes were enhanced at 20% (v/v). These findings provided new perspectives on growth responses under increasing CO2 treatment, opening new avenues on CCS schemes engineering designs and biochemical production.
    Matched MeSH terms: Biomass
  4. Alazaiza MYD, Albahnasawi A, Ahmad Z, Bashir MJK, Al-Wahaibi T, Abujazar MSS, et al.
    J Environ Manage, 2022 Dec 15;324:116415.
    PMID: 36206653 DOI: 10.1016/j.jenvman.2022.116415
    Remediation by algae is a very effective strategy for avoiding the use of costly, environmentally harmful chemicals in wastewater treatment. Recently, industries based on biomass, especially the bioenergy sector, are getting increasing attention due to their environmental acceptability. However, their practical application is still limited due to the growing cost of raw materials such as algal biomass, harvesting and processing limitations. Potential use of algal biomass includes nutrients recovery, heavy metals removal, COD, BOD, coliforms, and other disease-causing pathogens reduction and production of bioenergy and valuable products. However, the production of algal biomass using the variable composition of different wastewater streams as a source of growing medium and the application of treated water for subsequent use in agriculture for irrigation has remained a challenging task. The present review highlights and discusses the potential role of algae in removing beneficial nutrients from different wastewater streams with complex chemical compositions as a biorefinery concept and subsequent use of produced algal biomass for bioenergy and bioactive compounds. Moreover, challenges in producing algal biomass using various wastewater streams and ways to alleviate the stress caused by the toxic and high concentrations of nutrients in the wastewater stream have been discussed in detail. The technology will be economically feasible and publicly accepted by reducing the cost of algal biomass production and reducing the loaded or attached concentration of micropollutants and pathogenic microorganisms. Algal strain improvement, consortium development, biofilm formation, building an advanced cultivation reactor system, biorefinery concept development, and life-cycle assessment are all possible options for attaining a sustainable solution for sustainable biofuel production. Furthermore, producing valuable compounds, including pharmaceutical, nutraceutical and pigment contents generated from algal biomass during biofuel production, could also help reduce the cost of wastewater management by microalgae.
    Matched MeSH terms: Biomass
  5. Rambabu K, Avornyo A, Gomathi T, Thanigaivelan A, Show PL, Banat F
    Bioresour Technol, 2023 Jan;367:128257.
    PMID: 36343781 DOI: 10.1016/j.biortech.2022.128257
    Phycoremediation is gaining attention not only as a pollutant mitigation approach but also as one of the most cost-effective paths to achieve carbon neutrality. When compared to conventional treatment methods, phycoremediation is highly effective in removing noxious substances from wastewater and is inexpensive, eco-friendly, abundantly available, and has many other advantages. The process results in valuable bioproducts and bioenergy sources combined with pollutants capture, sequestration, and utilization. In this review, microalgae-based phycoremediation of various wastewaters for carbon neutrality and circular economy is analyzed scientometrically. Different mechanisms for pollutants removal and resource recovery from wastewaters are explained. Further, critical parameters that influence the engineering design and phycoremediation performance are described. A comprehensive knowledge map highlighting the microalgae potential to treat a variety of industrial effluents is also presented. Finally, challenges and future prospects for industrial implementation of phycoremediation towards carbon neutrality coupled with circular economy are discussed.
    Matched MeSH terms: Biomass
  6. Chia SR, Nomanbhay SBHM, Chew KW, Munawaroh HSH, Shamsuddin AH, Show PL
    Chemosphere, 2022 Jan;287(Pt 1):131944.
    PMID: 34438210 DOI: 10.1016/j.chemosphere.2021.131944
    Depletion of non-renewable feedstock and severe wastewater pollution due to human activities have created negative impact to living organisms. The potential solution is to implement wastewater treatment and bioelectricity production through algae-based microbial fuel cell. The algae biomass produced from microbial fuel cell could be further processed to generate biofuels through their unique compositions. The consumption of nutrients in wastewater through algae cultivation and biomass produced to be utilized for energy supply have showed the potential of algae to solve the issues faced nowadays. This review introduces the background of algae and mitigation of wastewater using algae as well as the bioenergy status in Malaysia. The mechanisms of nutrient assimilation such as nitrogen, phosphorus, carbon, and heavy metals are included, followed by the application of algae in microbial fuel cell's chambers. Lastly, the status of algae for bioenergy production are covered.
    Matched MeSH terms: Biomass
  7. Bahadar A, Kanthasamy R, Sait HH, Zwawi M, Algarni M, Ayodele BV, et al.
    Chemosphere, 2022 Jan;287(Pt 1):132052.
    PMID: 34478965 DOI: 10.1016/j.chemosphere.2021.132052
    The thermochemical processes such as gasification and co-gasification of biomass and coal are promising route for producing hydrogen-rich syngas. However, the process is characterized with complex reactions that pose a tremendous challenge in terms of controlling the process variables. This challenge can be overcome using appropriate machine learning algorithm to model the nonlinear complex relationship between the predictors and the targeted response. Hence, this study aimed to employ various machine learning algorithms such as regression models, support vector machine regression (SVM), gaussian processing regression (GPR), and artificial neural networks (ANN) for modeling hydrogen-rich syngas production by gasification and co-gasification of biomass and coal. A total of 12 machine learning algorithms which comprises the regression models, SVM, GPR, and ANN were configured, trained using 124 datasets. The performances of the algorithms were evaluated using the coefficient of determination (R2), root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE). In all cases, the ANN algorithms offer superior performances and displayed robust predictions of the hydrogen-rich syngas from the co-gasification processes. The R2 of both the Levenberg-Marquardt- and Bayesian Regularization-trained ANN obtained from the prediction of the hydrogen-rich syngas was found to be within 0.857-0.998 with low prediction errors. The sensitivity analysis to determine the effect of the process parameters on the model output revealed that all the parameters showed a varying level of influence. In most of the processes, the gasification temperature was found to have the most significant influence on the model output.
    Matched MeSH terms: Biomass
  8. Nawaz S, Ahmad M, Asif S, Klemeš JJ, Mubashir M, Munir M, et al.
    Bioresour Technol, 2022 Jan;343:126068.
    PMID: 34626762 DOI: 10.1016/j.biortech.2021.126068
    The efforts have been made to review phyllosilicate derived (clay-based) heterogeneous catalysts for biodiesel production via lignocellulose derived feedstocks. These catalysts have many practical and potential applications in green catalysis. Phyllosilicate derived heterogeneous catalysts (modified via any of these approaches like acid activated clays, ion exchanged clays and layered double hydroxides) exhibits excellent catalytic activity for producing cost effective and high yield biodiesel. The combination of different protocols (intercalated catalysts, ion exchanged catalysts, acidic activated clay catalysts, clay-supported catalysts, composites and hybrids, pillared interlayer clay catalysts, and hierarchically structured catalysts) was implemented so as to achieve the synergetic effects (acidic-basic) in resultant material (catalyst) for efficient conversion of lignocellulose derived feedstock (non-edible oils) to biodiesel. Utilisation of these Phyllosilicate derived catalysts will pave path for future researchers to investigate the cost-effective, accessible and improved approaches in synthesising novel catalysts that could be used for converting lignocellulosic biomass to eco-friendly biodiesel.
    Matched MeSH terms: Biomass
  9. Chen K, Ng KH, Cheng CK, Cheng YW, Chong CC, Vo DN, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132222.
    PMID: 34826917 DOI: 10.1016/j.chemosphere.2021.132222
    Biomass, which defined as plant- or animal-based materials, is intriguing tremendous scientific attentions due to its renewable attribute in serving energy security. Amongst, the plant-based biomasses, particularly those that co-generated in the agriculture activities, are commonly regarded as fuel for burning, which overlooked their hidden potentials for high-end applications. Organically, the plant-based biomass constitutes of lignocellulose components, which can be served as promising precursors for functionalized carbon materials. Meanwhile, its inorganic counterpart made up of various minerals, with Si being the most concerned one. With the advancement of biomass technologies and material synthesis in recent years, numerous attempts were endeavoured to obtain valorised products from biomass. Particularly, syntheses of catalytic and adsorptive materials are actively researched in the field of biomass reutilization. Herein, our work systematically summarized the advancements of biomass-materials for these applications in recent 10 years (2010-2020), with a special focus on the carbon-based and Si-based catalytic/adsorptive materials. Significantly, the deriving steps, inclusive of both pre-treatment and post-treatment of such materials, are incorporated in the discussion, alongside with their significances revealed too. The performance of the as-obtained materials in the respective application is systematically correlated to their physicochemical properties, hence providing valuable insights to the readers. Challenges and promising directions to be explored are raised too at the end of the review, aiming to advocate better-usage of biomass while offering great opportunities to sustain catalysis and adsorption in the industrial scale.
    Matched MeSH terms: Biomass
  10. Safian MT, Sekeri SH, Yaqoob AA, Serrà A, Jamudin MD, Mohamad Ibrahim MN
    Talanta, 2022 Mar 01;239:123109.
    PMID: 34864531 DOI: 10.1016/j.talanta.2021.123109
    With each passing year, the agriculture and wood processing industries generate increasingly high tonnages of biomass waste, which instead of being burned or left to accumulate should be utilized more sustainably. In parallel, advances in green technology have encouraged large companies and nations to begin using eco-friendly materials, including eco-friendly emulsifiers, which are used in various industries and in bio-based materials. The emulsion-conducive properties of lignocellulosic materials such as cellulose, hemicellulose, and lignin, the building blocks of plant and wood structures, have demonstrated a particular ability to alter the landscape of emulsion technology. Beyond that, the further modification of their structure may improve emulsion stability, which often determines the performance of emulsions. Considering those trends, this review examines the performance of lignocellulosic materials after modification according to their stability, droplet size, and distribution by size, all of which suggest their outstanding potential as materials for emulsifying agents.
    Matched MeSH terms: Biomass
  11. New EK, Tnah SK, Voon KS, Yong KJ, Procentese A, Yee Shak KP, et al.
    J Environ Manage, 2022 Apr 01;307:114385.
    PMID: 35104699 DOI: 10.1016/j.jenvman.2021.114385
    The high dependence on crude oil for energy utilization leads to a necessity of finding alternative sustainable resources. Solvents are often employed in valorizing the biomass into bioproducts and other value-added chemicals during treatment stages. Unfortunately, despite the effectiveness of conventional solvents, hindrances such as expensive solvents, unfavourable environmental ramifications, and complicated downstream separation systems often occur. Therefore, the scientific community has been actively investigating more cost-effective, environmentally friendly alternatives and possess the excellent dissolving capability for biomass processing. Generally, 'green' solvents are attractive due to their low toxicity, economic value, and biodegradability. Nonetheless, green solvents are not without disadvantages due to their complicated product recovery, recyclability, and high operational cost. This review summarizes and evaluates the recent contributions, including potential advantages, challenges, and drawbacks of green solvents, namely ionic liquids, deep eutectic solvents, water, biomass-derived solvents and carbon dioxide in transforming the lignocellulosic biomass into high-value products. Moreover, research opportunities for future developments and potential upscale implementation of green solvents are also critically discussed.
    Matched MeSH terms: Biomass
  12. Lim JH, Lee CW
    Environ Monit Assess, 2017 Aug 03;189(9):432.
    PMID: 28823015 DOI: 10.1007/s10661-017-6147-4
    Diatom abundance, biovolume and diversity were measured over a 2-year period along the Straits of Malacca at two stations with upper (Klang) and lower (Port Dickson) states of eutrophication. Diatom abundance, which ranged from 0.2 × 10(4) to 21.7 × 10(4) cells L(-1) at Klang and 0.9 × 10(3)- 41.3 × 10(3) cells L(-1) at Port Dickson, was influenced partly by nutrient concentrations. At Klang, the diatoms were generally smaller and less diverse (H' = 0.77 ± 0.48) and predominated by Skeletonema spp. (60 ± 32% of total diatom biomass). In contrast, diatoms were larger and more diverse (H' = 1.40 ± 0.67) at Port Dickson. Chaetoceros spp. were the most abundant diatoms at Port Dickson but attributed only 48 ± 30% of total diatom biomass. Comparison of both Klang and Port Dickson showed that their diatom community structure differed and that eutrophication reduced diatom diversity at Klang. We also observed how Si(OH)4 affected the abundance of Skeletonema spp. which in turn influenced the temporal variation of diatom community at Klang. Our results highlighted how eutrophication affects diatom diversity and community structure.
    Matched MeSH terms: Biomass
  13. Loow YL, Wu TY, Yang GH, Ang LY, New EK, Siow LF, et al.
    Bioresour Technol, 2018 Feb;249:818-825.
    PMID: 29136937 DOI: 10.1016/j.biortech.2017.07.165
    Deep eutectic solvents (DESs) have received considerable attention in recent years due to their low cost, low toxicity, and biodegradable properties. In this study, a sequential pretreatment comprising of a DES (choline chloride:urea in a ratio of 1:2) and divalent inorganic salt (CuCl2) was evaluated, with the aim of recovering xylose from oil palm fronds (OPF). At a solid-to-liquid ratio of 1:10 (w/v), DES alone was ineffective in promoting xylose extraction from OPF. However, a combination of DES (120°C, 4h) and 0.4mol/L of CuCl2 (120°C, 30min) resulted in a pretreatment hydrolysate containing 14.76g/L of xylose, remarkably yielding 25% more xylose than the CuCl2-only pretreatment (11.87g/L). Characterization studies such as FE-SEM, BET, XRD, and FTIR confirmed the delignification of OPF when DES was implemented. Thus, the use of this integrated pretreatment system enabled xylose recoveries which were comparable with other traditional pretreatments.
    Matched MeSH terms: Biomass
  14. Chen WH, Hsu HJ, Kumar G, Budzianowski WM, Ong HC
    Bioresour Technol, 2017 Dec;246:12-19.
    PMID: 28803060 DOI: 10.1016/j.biortech.2017.07.184
    This study focuses on the biochar formation and torrefaction performance of sugarcane bagasse, and they are predicted using the bilinear interpolation (BLI), inverse distance weighting (IDW) interpolation, and regression analysis. It is found that the biomass torrefied at 275°C for 60min or at 300°C for 30min or longer is appropriate to produce biochar as alternative fuel to coal with low carbon footprint, but the energy yield from the torrefaction at 300°C is too low. From the biochar yield, enhancement factor of HHV, and energy yield, the results suggest that the three methods are all feasible for predicting the performance, especially for the enhancement factor. The power parameter of unity in the IDW method provides the best predictions and the error is below 5%. The second order in regression analysis gives a more reasonable approach than the first order, and is recommended for the predictions.
    Matched MeSH terms: Biomass
  15. Kabir G, Mohd Din AT, Hameed BH
    Bioresour Technol, 2017 Oct;241:563-572.
    PMID: 28601774 DOI: 10.1016/j.biortech.2017.05.180
    Oil palm mesocarp fiber (OPMF) and palm frond (PF) were respectively devolatilized by pyrolysis to OPMF-oil and PF-oil bio-oils and biochars, OPMF-char and PF-char in a slow-heating fixed-bed reactor. In particular, the OPMF-oil and PF-oil were produced to a maximum yield of 48wt% and 47wt% bio-oils at 550°C and 600°C, respectively. The high heating values (HHVs) of OPMF-oil and PF-oil were respectively found to be 23MJ/kg and 21MJ/kg, whereas 24.84MJ/kg and 24.15MJ/kg were for the corresponding biochar. The HHVs of the bio-oils and biochars are associated with low O/C ratios to be higher than those of the corresponding biomass. The Fourier transform infrared spectra and peak area ratios highlighted the effect of pyrolysis temperatures on the bio-oil compositions. The bio-oils are pervaded with numerous oxygenated carbonyl and aromatic compounds as suitable feedstocks for renewable fuels and chemicals.
    Matched MeSH terms: Biomass
  16. Brosse N, Hussin MH, Rahim AA
    Adv. Biochem. Eng. Biotechnol., 2017 3 11;166:153-176.
    PMID: 28280848 DOI: 10.1007/10_2016_61
    Biofuels and chemicals can be produced from lignocellulosic feedstocks using biotechnological processes. The effective utilization of carbohydrates from biomass for the production of biofuels necessitates the development of pretreatment technologies to enhance their enzymatic digestibility. Among all the various pretreatment methods currently studied and developed, the organosolv processes, in which organic solvents or aqueous organic solvent mixtures are used as the pretreatment medium, appear to be specially promising in the context of the biorefinery because (1) they produce cellulosic pulp with a good enzymatic digestibility for monomeric glucose production and (2) they allow a clean fractionation of the major biomass components (cellulose, lignin, and hemicelluloses) into three process streams. In this chapter we give an updated overview of organosolv methods using conventional solvents and ionic liquids which have recently gained considerable interest as solvents for lignocellulosic biomass and pretreatment.
    Matched MeSH terms: Biomass
  17. Heděnec P, Jiménez JJ, Moradi J, Domene X, Hackenberger D, Barot S, et al.
    Sci Rep, 2022 Oct 17;12(1):17362.
    PMID: 36253487 DOI: 10.1038/s41598-022-21563-z
    Soil invertebrates (i.e., soil fauna) are important drivers of many key processes in soils including soil aggregate formation, water retention, and soil organic matter transformation. Many soil fauna groups directly or indirectly participate in litter consumption. However, the quantity of litter consumed by major faunal groups across biomes remains unknown. To estimate this quantity, we reviewed > 1000 observations from 70 studies that determined the biomass of soil fauna across various biomes and 200 observations from 44 studies on litter consumption by soil fauna. To compare litter consumption with annual litterfall, we analyzed 692 observations from 24 litterfall studies and 183 observations from 28 litter stock studies. The biomass of faunal groups was highest in temperate grasslands and then decreased in the following order: boreal forest > temperate forest > tropical grassland > tundra > tropical forest > Mediterranean ecosystems > desert and semidesert. Tropical grasslands, desert biomes, and Mediterranean ecosystems were dominated by termites. Temperate grasslands were dominated by omnivores, while temperate forests were dominated by earthworms. On average, estimated litter consumption (relative to total litter input) ranged from a low of 14.9% in deserts to a high of 100.4% in temperate grassland. Litter consumption by soil fauna was greater in grasslands than in forests. This is the first study to estimate the effect of different soil fauna groups on litter consumption and related processes at global scale.
    Matched MeSH terms: Biomass
  18. Chen WH, Ho KY, Lee KT, Ding L, Andrew Lin KY, Rajendran S, et al.
    Environ Res, 2022 Dec;215(Pt 1):114016.
    PMID: 35977586 DOI: 10.1016/j.envres.2022.114016
    Biochar is a carbon-neutral solid fuel and has emerged as a potential candidate to replace coal. Meanwhile, spent coffee grounds (SCGs) are an abundant and promising biomass waste that could be used for biochar production. This study develops a biochar valorization strategy by mixing SCGs with hydrogen peroxide (H2O2) at a weight ratio of 1:0.75 to upgrade SCG biochar. In this dual pretreatment method, the H2O2 oxidative ability at a pretreatment temperature of 105 °C contributes to an increase in the higher heating value (HHV) and carbon content of the SCG biochars. The HHV and carbon content of biochar increase by about 6.5% and 7.8%, respectively, when compared to the unpretreated one under the same conditions. Maximized biochar's HHV derived via the Taguchi method is 30.33 MJkg-1, a 46.9% increase compared to the raw SCG, and a 6.5% increase compared to the unpretreated SCG biochar. The H2O2 concentration is 18% for the maximized HHV. A quantitative identification index of intensity of difference (IOD) is adopted to evaluate the contributive level of H2O2 pretreatment in terms of the HHV and carbon content. IOD increases with increasing H2O2 pretreatment temperature. Before torrefaction, SCGs' IOD pretreated at 50 °C is 1.94%, while that pretreated at 105 °C is 8.06%. This is because, before torrefaction, H2O2 pretreatment sufficiently weakens SCGs' molecular structure, resulting in a higher IOD value. The IOD value of torrefied SCGs (TSCG) pretreated at 105 °C is 10.71%, accounting for a 4.59% increase compared to that pretreated at 50 °C. This implies that TSCG pretreated by H2O2 at 105 °C has better thermal stability. For every 1% increase in IOD of TSCG, the carbon content of the biochar increases 0.726%, and the HHV increases 0.529%. Overall, it is demonstrated that H2O2 is a green and promising pretreatment additive for upgrading SCG biochar's calorific value, and torrefied SCGs can be used as a potential solid fuel to approach carbon neutrality.
    Matched MeSH terms: Biomass
  19. Culaba AB, Mayol AP, San Juan JLG, Ubando AT, Bandala AA, Concepcion Ii RS, et al.
    Bioresour Technol, 2023 Feb;369:128256.
    PMID: 36343780 DOI: 10.1016/j.biortech.2022.128256
    The increase in worldwide demand for energy is driven by the rapid increase in population and exponential economic development. This resulted in the fast depletion of fossil fuel supplies and unprecedented levels of greenhouse gas in the atmosphere. To valorize biomass into different bioproducts, one of the popular and carbon-neutral alternatives is biorefineries. This system is an appropriate technology in the circular economy model. Various research highlighted the role of biorefineries as a centerpiece in the carbon-neutral ecosystem of technologies of the circular economy model. To fully realize this, various improvements and challenges need to be addressed. This paper presents a critical and timely review of the challenges and future direction of biorefineries as an alternative carbon-neutral energy source.
    Matched MeSH terms: Biomass
  20. Madadi M, Elsayed M, Sun F, Wang J, Karimi K, Song G, et al.
    Bioresour Technol, 2023 Mar;371:128591.
    PMID: 36627085 DOI: 10.1016/j.biortech.2023.128591
    A new cutting-edge lignocellulose fractionation technology for the co-production of glucose, native-like lignin, and furfural was introduced using mannitol (MT)-assisted p-toluenesulfonic acid/pentanol pretreatment, as an eco-friendly process. The addition of optimized 5% MT in pretreatment enhanced the delignification rate by 29% and enlarged the surface area and biomass porosity by 1.07-1.80 folds. This increased the glucose yield by 45% (from 65.34 to 94.54%) after enzymatic hydrolysis relative to those without MT. The extracted lignin in the organic phase of pretreatment exhibited β-O-4 bonds (61.54/100 Ar) properties of native cellulosic enzyme lignin. Lignin characterization and molecular docking analyses revealed that the hydroxyl tails of MT were incorporated with lignin and formed etherified lignin, which preserved high lignin integrity. The solubilized hemicellulose (96%) in the liquid phase of pretreatment was converted into furfural with a yield of 83.99%. The MT-assisted pretreatment could contribute to a waste-free biorefinery pathway toward a circular bioeconomy.
    Matched MeSH terms: Biomass
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links