Displaying publications 121 - 140 of 426 in total

Abstract:
Sort:
  1. Vijayarathna S, Zakaria Z, Chen Y, Latha LY, Kanwar JR, Sasidharan S
    Molecules, 2012 Apr 26;17(5):4860-77.
    PMID: 22538489 DOI: 10.3390/molecules17054860
    The urgent need to treat multi-drug resistant pathogenic microorganisms in chronically infected patients has given rise to the development of new antimicrobials from natural resources. We have tested Elaeis guineensis Jacq (Arecaceae) methanol extract against a variety of bacterial, fungal and yeast strains associated with infections. Our studies have demonstrated that E. guineensis exhibits excellent antimicrobial activity in vitro and in vivo against the bacterial and fungal strains tested. A marked inhibitory effect of the E. guineensis extracts was observed against C. albicans whereby E. guineensis extract at ½, 1, or 2 times the MIC significantly inhibited C. albicans growth with a noticeable drop in optical density (OD) of the bacterial culture. This finding confirmed the anticandidal activity of the extract on C. albicans. Imaging using scanning (SEM) and transmission (TEM) electron microscopy was done to determine the major alterations in the microstructure of the extract-treated C. albicans. The main abnormalities noted via SEM and TEM studies were the alteration in morphology of the yeast cells. In vivo antimicrobial activity was studies in mice that had been inoculated with C. albicans and exhibited good anticandidal activity. The authors conclude that the extract may be used as a candidate for the development of anticandidal agent.
  2. Zhou L, Song Y, Jiang Y, Wei Y, Jiang S, Chen Y, et al.
    Food Funct, 2023 Oct 02;14(19):8876-8892.
    PMID: 37698234 DOI: 10.1039/d3fo03041e
    Thinned peach fruit is a by-product with abundant yields. However, it is barely utilized. This study aimed to study the physicochemical properties and anti-diabetic ability of polysaccharides (PPSs) from a thinned peach fruit to investigate its application potential. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) characterizations were performed together with tests to determine rheology properties, monosaccharide composition, and molecular weight of the obtained polysaccharide. Moreover, the antioxidant activity, α-amylase inhibitory activity, binding abilities to bile salts, and effects on type 2 diabetic mice were analyzed. The results indicated that PPS consisted of two components with molecular weights of 287.38 kDa and 12.02 kDa, accounting for 89.83% and 10.17% of the composition, respectively. The dominant monosaccharides were galactose, galacturonic acid, and arabinose, exhibiting α-configurations. The concentration was positively related to the viscosity of PPS. As the temperature was increased from 25 °C to 37 °C and the pH from 2.0 to 7.0, the viscosity decreased. The IC50 values for scavenging DPPH and ABTS were around 0.22 and 1.47 mg mL-1. Also, PPS could inhibit α-amylase ability and bind bile salts. The administration of PPS significantly inhibited emaciation, organ damage, improved oral glucose tolerance and insulin resistance, enhanced the content of short-chain fatty acids (SCFAs), and regulated blood lipid profiles and the composition and structure of colon microbiota in type-2 diabetic mice. These results provide new evidence for the potential of PPS as a bioactive ingredient with anti-diabetic properties for use in the food industry.
  3. Zhang Q, Teow JY, Kerishnan JP, Abd Halim AA, Chen Y
    Biomedicines, 2023 May 16;11(5).
    PMID: 37239129 DOI: 10.3390/biomedicines11051458
    Oral squamous cell carcinoma (OSCC) is a prevalent type of head and neck cancer, ranked as the sixth most common cancer worldwide, accounting for approximately 300,000 new cases and 145,000 deaths annually. Early detection using biomarkers significantly increases the 5-year survival rate of OSCC by up to 80-90%. Clusterin (CLU), also known as apolipoprotein J, is a sulfated chaperonic glycoprotein expressed in all tissues and human fluids and has been reported to be a potential biomarker of OSCC. CLU has been implicated as playing a vital role in many biological processes such as apoptosis, cell cycle, etc. Abnormal CLU expression has been linked with the development and progression of cancers. Despite the fact that there are many studies that have reported the involvement of CLU and its isoforms in OSCC, the exact roles of CLU and its isoforms in OSCC carcinogenesis have not been fully explored. This article aims to provide a comprehensive review of the current understanding of CLU structure and genetics and its correlation with OSCC tumorigenesis to better understand potential diagnostic and prognostic biomarker development. The relationship between CLU and chemotherapy resistance in cancer will also be discussed to explore the therapeutic application of CLU and its isoforms in OSCC.
  4. Qin D, Gong Q, Li X, Gao Y, Gopinath SCB, Chen Y, et al.
    Biotechnol Appl Biochem, 2023 Apr;70(2):553-559.
    PMID: 35725894 DOI: 10.1002/bab.2377
    Mycoplasma pneumoniae is a highly infectious bacterium and the major cause of pneumonia especially in school-going children. Mycoplasma pneumoniae affects the respiratory tract, and 25% of patients experience health-related problems. It is important to have a suitable method to detect M. pneumoniae, and gold nanoparticle (GNP)-based colorimetric biosensing was used in this study to identify the specific target DNA for M. pneumoniae. The color of GNPs changes due to negatively charged GNPs in the presence of positively charged monovalent (Na+ ) ions from NaCl. This condition is reversed in the presence of a single-stranded oligonucleotide, as it attracts GNPs but not in the presence of double-stranded DNA. Single standard capture DNA was mixed with optimal target DNA that cannot be adsorbed by GNPs; under this condition, GNPs are not stabilized and aggregate at high ionic strength (from 100 mM). Without capture DNA, the GNPs that were stabilized by capture DNA (from 1 μM) became more stable under high ionic conditions and retaining their red color. The GNPs turned blue in the presence of target DNA at concentrations of 1 pM, and the GNPs retained a red color when there was no target in the solution. This method is useful for the simple, easy, and accurate identification of M. pneumoniae target DNA at higher discrimination and without involving sophisticated equipment, and this method provides a diagnostic for M. pneumoniae.
  5. Hui H, Gopinath SCB, Ismail ZH, Chen Y, Pandian K, Velusamy P
    Biotechnol Appl Biochem, 2023 Apr;70(2):581-591.
    PMID: 35765758 DOI: 10.1002/bab.2380
    Myocardial infarction (MI) is highly related to cardiac arrest leading to death and organ damage. Radiological techniques and electrocardiography have been used as preliminary tests to diagnose MI; however, these techniques are not sensitive enough for early-stage detection. A blood biomarker-based diagnosis is an immediate solution, and due to the high correlation of troponin with MI, it has been considered to be a gold-standard biomarker. In the present research, the cardiac biomarker troponin I (cTnI) was detected on an interdigitated electrode sensor with various surface interfaces. To detect cTnI, a capture aptamer-conjugated gold nanoparticle probe and detection antibody probe were utilized and compared through an alternating sandwich pattern. The surface metal oxide morphology of the developed sensor was proven by microscopic assessments. The limit of detection with the aptamer-gold-cTnI-antibody sandwich pattern was 100 aM, while it was 1 fM with antibody-gold-cTnI-aptamer, representing 10-fold differences. Further, the high performance of the sensor was confirmed by selective cTnI determination in serum, exhibiting superior nonfouling. These methods of determination provide options for generating novel assays for diagnosing MI.
  6. Ge Y, Lakshmipriya T, Gopinath SC, Anbu P, Chen Y, Hariri F, et al.
    Int J Nanomedicine, 2019;14:7851-7860.
    PMID: 31632005 DOI: 10.2147/IJN.S222238
    BACKGROUND: Gestational diabetes mellitus is a commonly occurring metabolic disorder during pregnancy, affecting >4% of pregnant women. It is generally defined as the intolerance of glucose with the onset or initial diagnosis during pregnancy. This illness affects the placenta and poses a threat to the baby as it affects the supply of proper oxygen and nutrients.

    PURPOSE: Due to the high percentage of affected pregnant women, it should be mandatory to evaluate glucose levels during pregnancy and there is a need for a continuous monitoring system.

    METHODS: Herein, the investigators modified the interdigitated (di)electrodes (IDE) sensing surface to detect the glucose on covalently immobilized glucose oxidase (GOx) with the graphene. The characterization of graphene and gold nanoparticle (GNP) was performed by high-resolution microscopy.

    RESULTS: Sensitivity was found to be 0.06 mg/mL and to enhance the detection, GOx was complexed with GNP. GNP-GOx was improved the sensitive detection twofold from 0.06 to 0.03 mg/mL, and it also displayed higher levels of current changes at all the concentrations of glucose that were tested. High-performance of the above IDE sensing system was attested by the specificity, reproducibility and higher sensitivity detections. Further, the linear regression analysis indicated the limit of detection to be between 0.02 and 0.03 mg/mL.

    CONCLUSION: This study demonstrated the potential strategy with nanocomposite for diagnosing gestational diabetes mellitus.

  7. Suyamud B, Chen Y, Quyen DTT, Dong Z, Zhao C, Hu J
    Sci Total Environ, 2024 Jan 10;907:167942.
    PMID: 37863226 DOI: 10.1016/j.scitotenv.2023.167942
    Aquaculture is a highly important and expanding industry in Southeast Asia (SEA). An upcoming problem is the emergence of antibiotic resistant pathogens due to the unchecked use of antibiotics and human clinical practices. This review focused insight into the occurrence of antimicrobial resistance (AMR) and strategies from SEA aquaculture based on the original research publication over the period 2002 to 2023. Amongst the 11 SEA countries, the most AMR report has come from Vietnam, Malaysia, and Thailand, respectively. The AMR found in SEA aquaculture were classified into 17 drug classes. The most reported AMR are aminoglycosides, beta-lactams, (fluoro)quinolones, tetracycline, sulpha group and multi-drug. Beta-lactams, tetracycline, sulpha group are reported in each country with the reported frequencies higher than 40 %. Escherichia coli, Aeromonas and Vibrio are the most widely and frequently reported ARB in SEA aquaculture. Multiple antibiotic resistance (MAR) indexes for the sample containing multiple bacterial isolates were generally low, while the medium numbers of MAR indexes for the typical bacteria species were higher than 0.2 and showed higher MAR levels than the global mean. Most of the detected ARGs are related to beta-lactams, tetracycline, sulpha group, and aminoglycosides. Amongst the beta-lactam resistance genes, blaTEM, and blaSHV are the most frequently detected. Almost all the available information of antibiotics, ARB and ARGs in SEA aquaculture was consistent with the global scale analysis. In addition, factors that contribute to the development and spread of AMR in SEA aquaculture were discussed. Moreover, the national action plan to combat AMR in SEA countries and the available technologies that already applied in the SEA aquaculture are also included in this review. Such findings underline the need for synergistic efforts from scientists, engineers, policy makers, government managers, entrepreneurs, and communities to manage and reduce the burden of AMR in aquaculture of SEA countries.
  8. Zhang S, Cao K, Wei Y, Jiang S, Ye J, Xu F, et al.
    Plant Physiol Biochem, 2023 Sep;202:107972.
    PMID: 37611487 DOI: 10.1016/j.plaphy.2023.107972
    Brassinosteroids (BRs) are phytohormones that play numerous roles in a plant's response to environmental stress. While BES/BZR transcription factors are essential components in BR signaling, their role in regulating postharvest fruit responses to cold stress is largely unknown. In this study, the application of 24-epibrassinolide (EBR) to peaches alleviated chilling injury (CI) during postharvest cold storage. We further characterized a key BES/BZR gene, PpBZR1, which regulates peach cold resistance. Transient expression PpBZR1 in peaches showed that PpBZR1 inhibits PpVIN2 expression and VIN activity, resulting in an elevated level of sucrose, which protects fruit from CI. Arabidopsis thaliana expressing PpBZR1 that had a high germination and seedling survival rate at low temperatures, which may be due to higher level of sucrose and lower oxidative damage. Mechanistically, we confirmed that PpBZR1 directly binds to the PpVIN2 promoter and functions as a negative regulator for sucrose metabolism. In addition, PpCBF1/5/6 were induced by EBR treatment and AtCBFs were upregulated in PpBZR1 transgenic Arabidopsis thaliana. Combined with previous findings, we hypothesize that PpBZR1 regulates PpVIN2 and may also be mediated by CBF. In conclusion, PpBZR1 expression is induced by EBR treatment during cold storage, which futher inhibite sucrose degradation gene PpVIN2 transcription via direct binding its promoter and indirectly regulating PpVIN2, resulting in slower sucrose degradation and higher chilling tolerance of peach.
  9. Hemagirri M, Chen Y, Gopinath SCB, Sahreen S, Adnan M, Sasidharan S
    Biochimie, 2023 Nov 02.
    PMID: 37918463 DOI: 10.1016/j.biochi.2023.10.019
    Maintaining the proteome is crucial to retaining cell functionality and response to multiple intrinsic and extrinsic stressors. Protein misfolding increased the endoplasmic reticulum (ER) stress and activated the adaptive unfolded protein response (UPR) to restore cell homeostasis. Apoptosis occurs when ER stress is prolonged or the adaptive response fails. In healthy young cells, the ratio of protein folding machinery to quantities of misfolded proteins is balanced under normal circumstances. However, the age-related deterioration of the complex systems for handling protein misfolding is accompanied by ageing-related disruption of protein homeostasis, which results in the build-up of misfolded and aggregated proteins. This ultimately results in decreased cell viability and forms the basis of common age-related diseases called protein misfolding diseases. Proteins or protein fragments convert from their ordinarily soluble forms to insoluble fibrils or plaques in many of these disorders, which build up in various organs such as the liver, brain, or spleen. Alzheimer's, Parkinson's, type II diabetes, and cancer are diseases in this group commonly manifest in later life. Thus, protein misfolding and its prevention by chaperones and different degradation paths are becoming understood from molecular perspectives. Proteodynamics information will likely affect future interventional techniques to combat cellular stress and support healthy ageing by avoiding and treating protein conformational disorders. This review provides an overview of the diverse proteostasis machinery, protein misfolding, and ER stress involvement, which activates the UPR sensors. Here, we will discuss the crosstalk between protein misfolding and ER stress and their role in developing age-related diseases.
  10. Zhao Z, Wei Y, Zou X, Jiang S, Chen Y, Ye J, et al.
    J Agric Food Chem, 2023 Dec 02.
    PMID: 38041637 DOI: 10.1021/acs.jafc.3c06676
    Previously, we reported that marine yeast Scheffersomyces spartinae exhibited biocontrol efficacy against the gray mold of strawberries caused by Botrytis cinerea. Herein, tryptophol, a quorum-sensing molecule, was identified in the metabolites of S. spartinae. Subsequently, we found that 25 μM tryptophol promoted population density, biofilm formation, and cell aggregation of S. spartinae. Furthermore, 25 μM tryptophol improved the biocontrol efficacy of S. spartinae against B. cinerea in vitro and in the strawberry fruit. Under a scanning electronic microscope, tryptophol facilitated colonization and biofilm formation on strawberry wounds, showing that tryptophol increased the biocontrol efficacy of S. spartinae via quorum sensing. Transcriptome analysis revealed that tryptophol upregulated the gene expression of SDS3, DAL81, DSE1, SNF5, SUN41, FLO8, and HOP1, which was associated with cell adhesion or biofilm formation. Thus, to the best of our knowledge, this study was the first to report that tryptophol improved the biocontrol efficacy of S. spartinae via quorum sensing.
  11. Anasdass JR, Kannaiyan P, Raghavachary R, Gopinath SCB, Chen Y
    PLoS One, 2018;13(2):e0193281.
    PMID: 29466453 DOI: 10.1371/journal.pone.0193281
    We present a biogenic method for the synthesis of palladium nanoparticle (PdNP)-modified by reducing graphene oxide sheets (rGO) in a one-pot strategy using Ficus carica fruit juice as the reducing agent. The synthesized material was well characterized by morphological and structural analyses, including, Ultraviolet-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and Transmission Electron Microscopy (TEM) and Raman spectroscopy. The results revealed that the PdNP modified GO are spherical in shape and estimated to be a dimension of ~0.16 nm. The PdNP/graphene exhibits a great catalytic activity in Suzuki cross-coupling reactions for the synthesis of biaryl compounds with various substrates under both aqueous and aerobic conditions. The catalyst can be recovered easily and is suitable for repeated use because it retains its original catalytic activity. The PdNP/rGO catalyst synthesized by an eco-friendly protocol was used for the Suzuki coupling reactions. The method offers a mild and effective substitute to the existing methods and may significantly contribute to green chemistry.
  12. Chen Y, Cheak TZ, Jin TS, Vinitha G, Dimyati K, Harun SW
    Sci Rep, 2024 Jan 25;14(1):2141.
    PMID: 38273021 DOI: 10.1038/s41598-024-52640-0
    We experimentally demonstrated the generation of domain-wall dark pulse in an Erbium-doped fiber laser using the combination of a 10 cm graded index multimode fiber sandwiched by single mode fibers as artificial saturable absorber. The interaction of phase difference in grade index multimode fiber allowed the stable dual-wavelength oscillation in the cavity. The dual-wavelength centered at 1567.2 nm and 1569.4 nm produces the topological defect in temporal domain and achieved a dark pulse formation with repetition rate of 21.5 MHz. The highest average pulse energy is calculated as 769.6 pJ with pulse width of 5 ns. Throughout the operating pump power range, the average pulse energy and output power increase linearly, with R2 of 0.9999 and achieved the laser efficiency of 9.33%. From the measurement in frequency domain, the signal-to-noise ratio is measured as 49 dB. As compared to reported DW dark pulse works, the proposed structure only required a short length of multimode fiber, which allowed the domain-wall dark pulse to achieve higher pulse repetition rate. The venture of domain wall dark pulse is potentially to pave the foundation toward sustainable industrial growth.
  13. Yu K, Feng L, Chen Y, Wu M, Zhang Y, Zhu P, et al.
    Comput Biol Med, 2024 Feb;169:107835.
    PMID: 38096762 DOI: 10.1016/j.compbiomed.2023.107835
    Current wavelet thresholding methods for cardiogram signals captured by flexible wearable sensors face a challenge in achieving both accurate thresholding and real-time signal denoising. This paper proposes a real-time accurate thresholding method based on signal estimation, specifically the normalized ACF, as an alternative to traditional noise estimation without the need for parameter fine-tuning and extensive data training. This method is experimentally validated using a variety of electrocardiogram (ECG) signals from different databases, each containing specific types of noise such as additive white Gaussian (AWG) noise, baseline wander noise, electrode motion noise, and muscle artifact noise. Although this method only slightly outperforms other methods in removing AWG noise in ECG signals, it far outperforms conventional methods in removing other real noise. This is attributed to the method's ability to accurately distinguish not only AWG noise that is significantly different spectrum of the ECG signal, but also real noise with similar spectra. In contrast, the conventional methods are effective only for AWG noise. In additional, this method improves the denoising visualization of the measured ECG signals and can be used to optimize other parameters of other wavelet methods to enhancing the denoised periodic signals, thereby improving diagnostic accuracy.
  14. Szpak M, Mezzavilla M, Ayub Q, Chen Y, Xue Y, Tyler-Smith C
    Genome Biol, 2018 Jan 17;19(1):5.
    PMID: 29343290 DOI: 10.1186/s13059-017-1380-2
    We present a new method, Fine-Mapping of Adaptive Variation (FineMAV), which combines population differentiation, derived allele frequency, and molecular functionality to prioritize positively selected candidate variants for functional follow-up. We calibrate and test FineMAV using eight experimentally validated "gold standard" positively selected variants and simulations. FineMAV has good sensitivity and a low false discovery rate. Applying FineMAV to the 1000 Genomes Project Phase 3 SNP dataset, we report many novel selected variants, including ones in TGM3 and PRSS53 associated with hair phenotypes that we validate using available independent data. FineMAV is widely applicable to sequence data from both human and other species.
  15. Bo S, Chang SK, Chen Y, Sheng Z, Jiang Y, Yang B
    Crit Rev Food Sci Nutr, 2024;64(9):2490-2512.
    PMID: 36123801 DOI: 10.1080/10408398.2022.2124396
    Rare flavonoids, a special subclass of naturally occurring flavonoids with diverse structures including pterocarpans, aurones, neoflavonoids, homoisoflavones, diphenylpropanes, rotenoids and 2-phenylethyl-chromones. They are mainly found in legumes with numerous health benefits. Rare flavonoids are regarded as minor flavonoids due to their very limited abundance in nature. This review gives an overview of the natural occurrences of rare flavonoids from previous literatures. Recent findings on the biosynthesis of rare flavonoids have been updated by describing their structural characteristics and classifications. Recent findings on the health benefits of rare flavonoids have also been compiled and discussed. Natural rare flavonoids with various characteristics from different subclasses from plant-based food sources are stated. They show a wide range of health benefits, including antibacterial, anticancer, anti-osteoporosis and antiviral activities. Studies reviewed suggest that rare flavonoids possessing different skeletons demonstrate different characteristic bioactivities by discussing their mechanism of actions and structure-activity relationships. Besides, recent advances on the biosynthesis of rare flavonoids, such as pterocarpans, rotenoids and aurones are well-known, while the biosynthesis of other subclasses remain unknown. The perspectives and further applications of rare flavonoids using metabolic engineering strategies also be expected.
  16. Wong JY, Chen YS, Chakravarthi S, Judson JP, L SR, Er HM
    Exp Ther Med, 2013 Nov;6(5):1247-1250.
    PMID: 24223653
    Euphorbia hirta is widely used in traditional remedies and has been used cross-culturally for generations against maladies such as asthma, skin ailments and hypertension. Previous studies have demonstrated that Euphorbia hirta has antibacterial activity, and have also indicated certain antimolluscidal, antimalarial and anti-inflammatory properties, the latter of which have been suggested to be more pronounced than those of the rheumatological drug, etanercept. To date, no studies have identified the anatomical effects of this herb on the organs of test animals. This study aimed to identify the effects of Euphorbia hirta on the ultrastructure of the murine liver, kidney and aorta. A total of 32 adult male Sprague-Dawley rats were divided into four groups; three groups were fed with aqueous extracts of Euphorbia hirta at doses of 1, 10 and 50 mg/kg, respectively, every alternate day for 50 days, while one group served as a control. The animals were later sacrificed and the liver, kidney and aorta harvested for examination by electron microscopy. The aorta showed no ultrastructural changes across the groups. Renal and hepatic tissue from the treated groups demonstrated dose-dependent injuries, which showed architectural damage beginning in the nuclei and spreading outwards. Taking into consideration the properties of Euphorbia hirta that have been described in previous studies, in addition to the results from the present study, it appears that the herb may exhibit similar effects to those of the quinolone group of antibiotics. Further in-depth investigations are required into the potential effects of Euphorbia hirta, deleterious and otherwise.
  17. Lau YL, Meganathan P, Sonaimuthu P, Thiruvengadam G, Nissapatorn V, Chen Y
    J Clin Microbiol, 2010 Oct;48(10):3698-702.
    PMID: 20660217 DOI: 10.1128/JCM.00462-10
    Loop-mediated isothermal amplification (LAMP), a rapid nucleic acid amplification method, was developed for the clinical diagnosis of toxoplasmosis. Three LAMP assays based on the SAG1, SAG2, and B1 genes of Toxoplasma gondii were developed. The sensitivities and specificities of the LAMP assays were evaluated by comparison with the results of conventional nested PCR. The LAMP assays were highly sensitive and had a detection limit of 0.1 tachyzoite, and no cross-reactivity with the DNA of other parasites was observed. Blood was collected from 105 individuals to test the LAMP assays: 40 patients with active toxoplasmosis, 40 negative controls, and 25 patients with other parasitic infections. The SAG2-based LAMP (SAG2-LAMP) had a greater sensitivity (87.5%) than the SAG1-LAMP (80%), B1-LAMP (80%), and nested PCR (62.5%). All the LAMP assays and nested PCR were 100% specific. This is the first report of a study which applied the LAMP method to diagnose toxoplasmosis from human blood samples. Due to its simplicity, sensitivity, and specificity, LAMP is suggested as an appropriate method for routine diagnosis of active toxoplasmosis in humans.
  18. Attallah OA, Mojicevic M, Garcia EL, Azeem M, Chen Y, Asmawi S, et al.
    Polymers (Basel), 2021 Jun 30;13(13).
    PMID: 34208796 DOI: 10.3390/polym13132155
    On a score sheet for plastics, bioplastics have a medium score for combined mechanical performance and a high score for biodegradability with respect to counterpart petroleum-based plastics. Analysis quickly confirms that endeavours to increase the mechanical performance score for bioplastics would be far more achievable than delivering adequate biodegradability for the recalcitrant plastics, while preserving their impressive mechanical performances. Key architectural features of both bioplastics and petroleum-based plastics, namely, molecular weight (Mw) and crystallinity, which underpin mechanical performance, typically have an inversely dependent relationship with biodegradability. In the case of bioplastics, both macro and micro strategies with dual positive correlation on mechanical and biodegradability performance, are available to address this dilemma. Regarding the macro approach, processing using selected fillers, plasticisers and compatibilisers have been shown to enhance both targeted mechanical properties and biodegradability within bioplastics. Whereas, regarding the micro approach, a whole host of bio and chemical synthetic routes are uniquely available, to produce improved bioplastics. In this review, the main characteristics of bioplastics in terms of mechanical and barrier performances, as well as biodegradability, have been assessed-identifying both macro and micro routes promoting favourable bioplastics' production, processability and performance.
  19. Zhao S, Chen J, Cao S, Wang H, Chen H, Wei Y, et al.
    Plant Physiol Biochem, 2024 Mar;208:108480.
    PMID: 38437751 DOI: 10.1016/j.plaphy.2024.108480
    It is well established that programmed cell death (PCD) occurred in broccoli during postharvest senescence, but no studies have been conducted on the regulation of broccoli cytochrome f by mannose treatment and its relationship with PCD. In this study, we treated broccoli buds with mannose to investigate the changes in color, total chlorophyll content, gene expression related to chlorophyll metabolism, chloroplast structure, and cytochrome f determination during postharvest storage. In addition, to investigate the effect of cytochrome f on PCD, we extracted cytochrome f from broccoli and treated Nicotiana tabacum L. cv Bright Yellow 2 (BY-2) cells with extracted cytochrome f from broccoli at various concentrations. The results showed that cytochrome f can induce PCD in tobacco BY-2 cells, as evidenced by altered cell morphology, nuclear chromatin disintegration, DNA degradation, decreased cell viability, and increased caspase-3-like protease production. Taken together, our study indicated that mannose could effectively delay senescence of postharvest broccoli by inhibiting the expression of gene encoding cytochrome f which could induce PCD.
  20. Wong ZY, Low ZR, Chen Y, Danaee M, Nah SA
    Arch Dis Child, 2022 Jun 08.
    PMID: 35676083 DOI: 10.1136/archdischild-2022-323892
    OBJECTIVE: Paediatric living donor liver transplantation (LDLT) has gained popularity due to limited deceased donor organ supply. Some studies report inequalities in donor and recipient gender profiles, but data are sparse. We evaluated LDLT donor-recipient gender profiles, comparing country income categories and gender disparity level.

    DESIGN: We performed a systematic review, searching PubMed, Embase and Cochrane databases for publications dated January 2006-September 2021. We included full-text English articles reporting gender in ≥40 universally sampled donor-recipient pairs. Search terms were permutations of 'liver transplant', 'living donor' and 'paediatric'. Countries were grouped as high/middle/low-income economies based on World Bank criteria and into groups based on deviation from gender parity in Gender Development Index (GDI) values (group 1 indicating closest to gender parity, group 5 indicating furthest). Proportions analysis with corresponding 95% CI were used for analysis of dichotomous variables, with significance when 95% CI did not cross 0.5. Data are reported as female proportion (%) and 95% CI.

    RESULTS: Of 12 525 studies identified, 14 retrospective studies (12 countries; 6152 recipients and 6138 donors) fulfilled study inclusion criteria. Male recipient preponderance was seen in lower middle-income countries (all were also GDI group 5) (39.3 (95% CI 34.7 to 44.0)) and female recipient preponderance in GDI groups 1 and 3. Female donor preponderance was seen overall (57.4% (95% CI 55.1 to 59.6)), in middle income countries and in three of four GDI groups represented.

    CONCLUSION: There are significant imbalances in recipient-donor gender profiles in paediatric LDLT that are not well explained. The reasons for overall female donor preponderance across income tiers must be scrutinised.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links