Displaying publications 141 - 160 of 350 in total

Abstract:
Sort:
  1. Abdulwanis Mohamed Z, Mohamed Eliaser E, Mazzon E, Rollin P, Cheng Lian Ee G, Abdull Razis AF
    Molecules, 2019 Aug 27;24(17).
    PMID: 31461914 DOI: 10.3390/molecules24173109
    Plant natural compounds have great potential as alternative medicines for preventing and treating diseases. Melicope lunu-ankenda is one Melicope species (family Rutaceae), which is widely used in traditional medicine, consumed as a salad and a food seasoning. Consumption of different parts of this plant has been reported to exert different biological activities such as antioxidant and anti-inflammatory qualities, resulting in a protective effect against several health disorders including neurodegenerative diseases. Various secondary metabolites such as phenolic acid derivatives, flavonoids, coumarins and alkaloids, isolated from the M. lunu-ankenda plant, were demonstrated to have neuroprotective activities and also exert many other beneficial biological effects. A number of studies have revealed different neuroprotective mechanisms for these secondary metabolites. This review summarizes the most significant and recent studies for neuroprotective activity of M. lunu-ankenda major secondary metabolites in neurodegenerative diseases.
    Matched MeSH terms: Antioxidants/chemistry
  2. Zakaria ZA, Sahmat A, Hizami Azmi A, Zainol ASN, Omar MH, Balan T, et al.
    Pharm Biol, 2023 Dec;61(1):1152-1161.
    PMID: 37559390 DOI: 10.1080/13880209.2023.2241510
    CONTEXT: Bauhinia purpurea L. (Fabaceae) is used in the Ayurvedic system to treat various oxidative-related ailments (e.g., wounds, ulcers etc.). Therefore, it is believed that the plant also has the potential to alleviate oxidative-related liver damage.

    OBJECTIVE: This study elucidates the hepatoprotective activity of chloroform extract of B. purpurea leaves (CEBP) in paracetamol (PCM)-induced liver injury (PILI) rats.

    MATERIALS AND METHODS: Male Sprague-Dawley rats (n = 6) were pre-treated once daily (p.o.) with CEBP (50-500 mg/kg) for seven consecutive days before being administered (p.o.) a hepatotoxic agent, 3 g/kg PCM. Liver enzyme levels were determined from the collected blood, while the collected liver was used to determine the activity of endogenous antioxidant enzymes and for histopathological examination. CEBP was also subjected to radical scavenging assays and phytochemical analysis.

    RESULTS: CEBP significantly (p 

    Matched MeSH terms: Antioxidants/chemistry
  3. El Hachlafi N, Mrabti HN, Al-Mijalli SH, Jeddi M, Abdallah EM, Benkhaira N, et al.
    Molecules, 2023 Aug 06;28(15).
    PMID: 37570883 DOI: 10.3390/molecules28155913
    Cedrus atlantica (Endl.) Manetti ex Carriere is an endemic tree possessing valuable health benefits which has been widely used since time immemorial in international traditional pharmacopoeia. The aim of this exploratory investigation is to determine the volatile compounds of C. atlantica essential oils (CAEOs) and to examine their in vitro antimicrobial, antioxidant, anti-inflammatory, and dermatoprotective properties. In silico simulations, including molecular docking and pharmacokinetics absorption, distribution, metabolism, excretion, and toxicity (ADMET), and drug-likeness prediction were used to reveal the processes underlying in vitro biological properties. Gas chromatography-mass spectrophotometry (GC-MS) was used for the chemical screening of CAEO. The antioxidant activity of CAEO was investigated using four in vitro complementary techniques, including ABTS and DPPH radicals scavenging activity, ferric reductive power, and inhibition of lipid peroxidation (β-carotene test). Lipoxygenase (5-LOX) inhibition and tyrosinase inhibitory assays were used for testing the anti-inflammatory and dermatoprotective properties. GC-MS analysis indicated that the main components of CAEO are β-himachalene (28.99%), α-himachalene (14.43%), and longifolene (12.2%). An in vitro antimicrobial activity of CAEO was examined against eleven strains of Gram-positive bacteria (three strains), Gram-negative bacteria (four strains), and fungi (four strains). The results demonstrated high antibacterial and antifungal activity against ten of them (>15 mm zone of inhibition) using the disc-diffusion assay. The microdilution test showed that the lowest values of MIC and MBC were recorded with the Gram-positive bacteria in particular, which ranged from 0.0625 to 0.25 % v/v for MIC and from 0.5 to 0.125 % v/v for MBC. The MIC and MFC of the fungal strains ranged from 0.5 to 4.0% (MIC) and 0.5 to 8.0% v/v (MFC). According to the MBC/MIC and MFC/MIC ratios, CAEO has bactericidal and fungicidal activity. The results of the in vitro antioxidant assays revealed that CAEO possesses remarkable antioxidant activity. The inhibitory effects on 5-LOX and tyrosinase enzymes was also significant (p < 0.05). ADMET investigation suggests that the main compounds of CAEO possess favorable pharmacokinetic properties. These findings provide scientific validation of the traditional uses of this plant and suggest its potential application as natural drugs.
    Matched MeSH terms: Antioxidants/chemistry
  4. Salleh WMNHW
    Z Naturforsch C J Biosci, 2021 Mar 26;76(3-4):93-102.
    PMID: 32960783 DOI: 10.1515/znc-2020-0116
    Hoja santa (Piper auritum) refers to an important presence in Mexican cuisine. The information of this review article was gathered from several electronic sources such as Scopus, Medline, Scielo, ScienceDirect, SciFinder, Web of Science, Google Scholar and Lilacs. Phytochemical studies have revealed the presence of benzoic acid derivatives, phenylpropanoids and triterpenoids, while the essential oils have shown its richness in safrole, hence it has several activities, such as antioxidant, toxicity, insecticidal, anti-diabetic and cytotoxic properties. This review is expected to draw the attention of medical professionals and the general public towards P. auritum as well as to open the door for detailed research in the future.
    Matched MeSH terms: Antioxidants/chemistry
  5. Ali A, Chong CH, Mah SH, Abdullah LC, Choong TSY, Chua BL
    Molecules, 2018 Feb 23;23(2).
    PMID: 29473847 DOI: 10.3390/molecules23020484
    The phenolic constituents in Piper betle are well known for their antioxidant potential; however, current literature has very little information on their stability under the influence of storage factors. Present study evaluated the stability of total phenolic content (TPC) and antioxidant activity together with individual phenolic constituents (hydroxychavicol, eugenol, isoeugenol and allylpyrocatechol 3,4-diacetate) present in dried Piper betle's extract under different storage temperature of 5 and 25 °C with and without light for a period of six months. Both light and temperature significantly influenced TPC and its corresponding antioxidant activity over time. More than 95% TPC and antioxidant activity was retained at 5 °C in dark condition after 180 days of storage. Hydroxychavicol demonstrated the best stability with no degradation while eugenol and isoeugenol displayed moderate stability in low temperature (5 °C) and dark conditions. 4-allyl-1,2-diacetoxybenzene was the only compound that underwent complete degradation. A new compound, 2,4-di-tert-butylphenol, was detected after five weeks of storage only in the extracts exposed to light. Both zero-order and first-order kinetic models were adopted to describe the degradation kinetics of the extract's antioxidant activity. Zero-order displayed better fit with higher correlation coefficients (R² = 0.9046) and the half-life was determined as 62 days for the optimised storage conditions (5 °C in dark conditions).
    Matched MeSH terms: Antioxidants/chemistry*
  6. Agatonovic-Kustrin S, Morton DW, Ristivojević P
    J Chromatogr A, 2016 Oct 14;1468:228-235.
    PMID: 27670751 DOI: 10.1016/j.chroma.2016.09.041
    The aim of this study was to develop and validate a rapid and simple high performance thin layer chromatographic (HPTLC) method to screen for antioxidant activity in algal samples. 16 algal species were collected from local Victorian beaches. Fucoxanthin, one of the most abundant marine carotenoids was quantified directly from the HPTLC plates before derivatization, while derivatization either with 2,2-diphenyl-1-picrylhydrazyl (DPPH) or ferric chloride (FeCl3) was used to analyze antioxidants in marine algae, based on their ability to scavenge non biological stable free radical (DPPH) or to chelate iron ions. Principal component analysis of obtained HPTLC fingerprints has classified algae species into 5 groups according to their chemical/antioxidant profiles. The investigated brown algae samples were found to be rich in non-and moderate-polar compounds and phenolic compounds with antioxidant activity. Most of the phenolic iron chelators also have shown free radical scavenging activity. Strong positive and significant correlations between total phenolic content and DPPH radical scavenging activity showed that, phenolic compounds, including flavonoids are the main contributors of antioxidant activity in these species. The results suggest that certain brown algae possess significantly higher antioxidant potential when compared to red or green algae and could be considered for future applications in medicine, dietary supplements, cosmetics or food industries. Cystophora monilifera extract was found to have the highest antioxidant concentration, followed by Zonaria angustata, Cystophora pectinate, Codium fragile, and Cystophora pectinata. Fucoxanthin was found mainly in the brown algae species. The proposed methods provide an edge in terms of screening for antioxidants and quantification of antioxidant constituents in complex mixtures. The current application also demonstrates flexibility and versatility of a standard HPTLC system in the drug discovery. Proposed methods could be used for the bioassay-guided isolation of unknown natural antioxidants and subsequent identification if combined with spectroscopic identification.
    Matched MeSH terms: Antioxidants/chemistry*
  7. Nazarudin MF, Alias NH, Balakrishnan S, Wan Hasnan WNI, Noor Mazli NAI, Ahmad MI, et al.
    Molecules, 2021 Aug 27;26(17).
    PMID: 34500650 DOI: 10.3390/molecules26175216
    Recent increased interest in seaweed is motivated by attention generated in their bioactive components that have potential applications in the functional food and nutraceutical industries. In the present study, nutritional composition, metabolite profiles, phytochemical screening and physicochemical properties of freeze-dried brown seaweed, Sargassum polycystum were evaluated. Results showed that the S. polycystum had protein content of 8.65 ± 1.06%, lipid of 3.42 ± 0.01%, carbohydrate of 36.55 ± 1.09% and total dietary fibre content of 2.75 ± 0.58% on dry weight basis. The mineral content of S. polycystum including Na, K, Ca, Mg Fe, Se and Mn were 8876.45 ± 0.47, 1711.05 ± 0.07, 1079.75 ± 0.30, 213.85 ± 0.02, 277.6 ± 0.12, 4.70 ± 0.00 and 4.45 ± 0.00 mg 100/g DW, respectively. Total carotenoid, chlorophyll a and b content in S. polycystum were detected at 45.28 ± 1.77, 141.98 ± 1.18 and 111.29 µg/g respectively. The total amino acid content was 74.90 ± 1.45%. The study revealed various secondary metabolites and major constituents of S. polycystum fibre to include fucose, mannose, galactose, xylose and rhamnose. The metabolites extracted from the seaweeds comprised n-hexadecanoic acid, 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester, benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy- methyl ester, 1-dodecanol, 3,7,11-trimethyl-, which were the most abundant. The physicochemical properties of S. polycystum such as water-holding and swelling capacity were comparable to several commercial fibre-rich products. In conclusion, results of this study indicate that S. polycystum is a potential candidate as functional food sources for human consumption and its cultivation needs to be encouraged.
    Matched MeSH terms: Antioxidants/chemistry
  8. Narayanan M, Srinivasan S, Gnanasekaran C, Ramachandran G, Chelliah CK, Rajivgandhi G, et al.
    Microb Pathog, 2024 Apr;189:106595.
    PMID: 38387848 DOI: 10.1016/j.micpath.2024.106595
    Cymodocea serrulata mediated titanium dioxide nanoparticles (TiO2 NPs) were successfully synthesized. The XRD pattern and FTIR spectra demonstrated the crystalline structure of TiO2 NPs and the presence of phenols, flavonoids and alkaloids in the extract. Further SEM revealed that TiO2 NPs has uniform structure and spherical in shape with their size ranged from 58 to 117 nm. Antibacterial activity of TiO2 NPs against methicillin-resistant Staphylococcus aureus (MRSA) and Vibrio cholerae (V. cholerae), provided the zone of inhibition of 33.9 ± 1.7 and 36.3 ± 1.9 mm, respectively at 100 μg/mL concentration. MIC of TiO2 NPs against MRSA and V. cholerae showed 84% and 87% inhibition at 180 μg/mL and 160 μg/mL respectively. Subsequently, the sub-MIC of V. cholerae demonstrated minimal or no impact on bacterial growth at concentration of 42.5 μg/mL concentration. In addition, TiO2 NPs exhibited their ability to inhibit the biofilm forming V. cholerae which caused distinct morphological and intercellular damages analysed using CLSM and TEM. The antioxidant properties of TiO2 NPs were demonstrated through TAA and DPPH assays and exposed its scavenging activity with IC50 value of 36.42 and 68.85 μg/mL which denotes its valuable antioxidant properties with potential health benefits. Importantly, the brine shrimp based lethality experiment yielded a low cytotoxic effect with 13% mortality at 100 μg/mL. In conclusion, the multifaceted attributes of C. serrulata mediated TiO2 NPs encompassed the antibacterial, antioxidant and anti-biofilm inhibition effects with low cytotoxicity in nature were highlighted in this study and proved the bioderived TiO2 NPs could be used as a promising agent for biomedical applications.
    Matched MeSH terms: Antioxidants/chemistry
  9. Ghanbari R, Zarei M, Ebrahimpour A, Abdul-Hamid A, Ismail A, Saari N
    Int J Mol Sci, 2015 Dec 04;16(12):28870-85.
    PMID: 26690117 DOI: 10.3390/ijms161226140
    In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8%) after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH) (56.00%) and ferrous ion-chelating (FIC) (59.00%) methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions.
    Matched MeSH terms: Antioxidants/chemistry*
  10. Ramli NS, Ismail P, Rahmat A
    ScientificWorldJournal, 2014;2014:964731.
    PMID: 25379555 DOI: 10.1155/2014/964731
    The aim of this study was to examine the effects of extraction methods on antioxidant capacities of red dragon fruit peel and flesh. Antioxidant capacities were measured using ethylenebenzothiozoline-6-sulfonic acid (ABTS) radical cation assay and ferric reducing antioxidant power assay (FRAP). Total phenolic content (TPC) was determined using Folin-Ciocalteu reagent while quantitative determination of total flavonoid content (TFC) was conducted using aluminium trichloride colorimetric method. Betacyanin content (BC) was measured by spectrophotometer. Red dragon fruit was extracted using conventional (CV) and ultrasonic-assisted extraction (UE) technique to determine the most efficient way of extracting its antioxidant components. Results indicated that UE increased TFC, reduced the extraction yield, BC, and TPC, but exhibited the strongest scavenging activity for the peel of red dragon fruit. In contrast, UE reduced BC, TFC, and scavenging activity but increased the yield for the flesh. Nonetheless, UE slightly increases TPC in flesh. Scavenging activity and reducing power were highly correlated with phenolic and flavonoid compounds. Conversely, the scavenging activity and reducing power were weakly correlated with betacyanin content. This work gives scientific evidences for the consideration of the type of extraction techniques for the peel and flesh of red dragon fruit in applied research and food industry.
    Matched MeSH terms: Antioxidants/chemistry
  11. Jalal TK, Ahmed IA, Mikail M, Momand L, Draman S, Isa ML, et al.
    Appl Biochem Biotechnol, 2015 Apr;175(7):3231-43.
    PMID: 25649443 DOI: 10.1007/s12010-015-1499-0
    Artocarpus altilis (breadfruit) pulp, peel and whole fruit were extracted with various solvents such as hexane, dichloromethane (DCM) and methanol. The antioxidant activity of these extracts were examined using the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging test. IC50 was 55 ± 5.89 μg/ml for the pulp part of methanol extract. In the β-carotene bleaching assay, the antioxidant activity was 90.02 ± 1.51 % for the positive control (Trolox) and 88.34 ± 1.31 % for the pulp part of the fruit methanol extract. The total phenolic content of the crude extracts was determined using the Folin-Ciocalteu procedure; methanol pulp part demonstrated the highest phenol content value of 781 ± 52.97 mg GAE/g of dry sample. While the total flavonoid content was determined using the aluminium chloride colorimetric assay, the highest value of 6213.33 ± 142.22 mg QE/g was indicated by pulp part of the fruit methanol extract. The antimicrobial activity of the crude extracts was tested using disc diffusion method against pathogenic microorganisms: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Salmonella typhimurium, Escherichia coli, Klebsiella pneumonia and Candida albicans. Methanol extract of pulp part was recorded to have the highest zone of inhibition against Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) and MBC/minimal fungicidal concentration (MFC) for the extracts were also determined using the microdilution method ranging from 4000 to 63 μg/ml against pathogenic microbes. The MBC/MFC values varied from 250 to 4000 μg/ml. A correlation between antioxidant activity assays, antimicrobial activity and phenolic content was established. The results shows that the various parts of A. altilis fruit extracts promising antioxidant activities have potential bioactivities due to high content of phenolic compounds.
    Matched MeSH terms: Antioxidants/chemistry
  12. Farzinebrahimi R, Mat Taha R, Rashid K, Syafawati Yaacob J
    ScientificWorldJournal, 2014;2014:407284.
    PMID: 24967432 DOI: 10.1155/2014/407284
    The leaf of Gardenia jasminoides Ellis was used as explants and was cultured on MS and WPM media supplemented with various concentrations of NAA, IAA, 2,4-D, IBA, TDZ, and Kn (0 to 5 mg L(-1) with 0.5 increment). After six months, the higher percentage of callus (100%) and the best dry and fresh weight of callus were formed on WPM medium supplemented with 2,4-D and NAA (2.0-3.0 mg L(-1)) and this amount was decreased from (84%) to (69%) when this media supplemented with Kinetin and TDZ (1 mg L(-1)) respectively were used. Leaf segments cultured on WPM media added with Kn (1 mg L(-1)) and TDZ (2 mg L(-1)) yielded the least amount of callus. It was found that WPM media added with IAA (4.5-5.0 mg L(-1)) were optimum for root induction from G. jasminoides plantlets. Antibacterial screening of leaf extracts (in vivo) showed no inhibitory effect against E. coli, P. aeruginosa, S. aureus, and B. cereus, in contrast to callus extracts from leaf cultures supplemented with NAA, which showed inhibition activity against E. coli and B. cereus. The callus extracts from leaf cultures grown on both MS and WPM media showed higher antioxidant and superoxide dismutase activities than leaf extracts.
    Matched MeSH terms: Antioxidants/chemistry
  13. Subramaniam S, Sabaratnam V, Kuppusamy UR, Tan YS
    Int J Med Mushrooms, 2014;16(3):259-67.
    PMID: 24941167
    Species of the genus Ganoderma are a cosmopolitan wood decaying white rot fungi, which has been used by the Asians for therapeutic purposes for centuries. In the present study, solid-substrate fermentation (SSF) of wheat grains (Triticum aestivum L.) was carried out with indigenous Ganoderma australe (KUM60813) and G. neo-japonicum (KUM61076) selected based on ethnomycological knowledge. G. lucidum (VITA GL) (a commercial strain) was also included in the study. Antioxidant activities of the crude ethanol and aqueous extracts of the fermented and unfermented wheat grains were investigated by ferric reducing antioxidant power (FRAP), Trolox equivalent antioxidant capacity (TEAC), diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging ability, and lipid peroxidation assay. Among the six mycelia extracts tested, the ethanol extract from wheat fermented with KUM61076 mycelia showed the most potent antioxidant activities, whereas the ethanol extract of wheat grains fermented with KUM60813 mycelia has a good potential in protecting frying oils against oxidation. Total phenolic content (TPC) in the ethanol extracts were higher than that in the aqueous extract. The wheat grains fermented with G. australe (KUM60813) and G. neo-japonicum KUM61076 have greater antioxidant potential compared to the commercially available G. lucidum (VITA GL). The antioxidant activities of the mycelia extracts had a positive correlation with their phenolic contents. Thus phenolic compounds may play a vital role in the antioxidant activities of the selected Ganoderma spp.
    Matched MeSH terms: Antioxidants/chemistry*
  14. Taheri S, Abdullah TL, Karimi E, Oskoueian E, Ebrahimi M
    Int J Mol Sci, 2014;15(7):13077-90.
    PMID: 25056545 DOI: 10.3390/ijms150713077
    The present study was conducted in order to assess the effect of various doses of acute gamma irradiation (0, 10, 15, and 20 Gy) on the improvement of bioactive compounds and their antioxidant properties of Curcuma alismatifolia var. Sweet pink. The high performance liquid chromatography (HPLC) and gas chromatography (GC) analysis uncovered that various types of phenolic, flavonoid compounds, and fatty acids gradually altered in response to radiation doses. On the other hand, antioxidant activities determined by 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), ferric reduction, antioxidant power (FRAP), and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assay showed a higher irradiation level significantly increased the antioxidant properties. This study revealed an efficient effect of varying levels of gamma radiation, based on the pharmaceutical demand to enhance the accumulation and distribution of bioactive compounds such as phenolic and flavonoid compounds, fatty acids, as well as their antioxidant activities in the leaves of C. alismatifolia var. Sweet pink.
    Matched MeSH terms: Antioxidants/chemistry*
  15. Abdullah AS, Mohammed AS, Abdullah R, Mirghani ME, Al-Qubaisi M
    PMID: 24962691 DOI: 10.1186/1472-6882-14-199
    Waterlily Mango (Mangifera indica L.) is thought to be antioxidant-rich, conferred by its functional phytochemicals.
    Matched MeSH terms: Antioxidants/chemistry
  16. Taha M, Ismail NH, Jamil W, Rashwan H, Kashif SM, Sain AA, et al.
    Eur J Med Chem, 2014 Sep 12;84:731-8.
    PMID: 25069019 DOI: 10.1016/j.ejmech.2014.07.078
    4-Methylbenzimidazole 1-28 novel derivatives were synthesized and evaluated for their antiglycation and antioxidant activities. Compounds 1-7 and 11 showed excellent activities ranged 140-280 μM, better than standard drug rutin (294.46 ± 1.50 μM). Compound 1-28 were also evaluated for DPPH activities. Compounds 1-8 showed excellent activities, ranging 12-29 μM, better than standard drug n-propylgallate (IC50 = 30.30 ± 0.40 μM). For superoxide anion scavenging activity, compounds 1-7 showed better activity than standard n-propylgallate (IC50 = 106.34 ± 1.6 μM), ranged 82-104 μM. These compounds were found to be nontoxic to THP-1 cells.
    Matched MeSH terms: Antioxidants/chemistry
  17. Mohd Ghazali MA, Al-Naqeb G, Krishnan Selvarajan K, Hazizul Hasan M, Adam A
    Biomed Res Int, 2014;2014:539607.
    PMID: 24955361 DOI: 10.1155/2014/539607
    Polygonum minus (Polygonaceae) is a medicinal herb distributed throughout eastern Asia. The present study investigated antiproliferative effect of P. minus and its possible mechanisms. Four extracts (petroleum ether, methanol, ethyl acetate, and water) were prepared by cold maceration. Extracts were subjected to phytochemical screening, antioxidant, and antiproliferative assays; the most bioactive was fractionated using vacuum liquid chromatography into seven fractions (F1-F7). Antioxidant activity was measured via total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. Antiproliferative activity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Most active fraction was tested for apoptosis induction and cell cycle arrest in HepG2 cells using flow cytometry and confocal microscopy. Apoptotic-related gene expression was studied by RT-PCR. Ethyl acetate extract was bioactive in initial assays. Its fraction, F7, exhibited highest antioxidant capacity (TPC; 113.16 ± 6.2 mg GAE/g extract, DPPH; EC50: 30.5 ± 3.2 μg/mL, FRAP; 1169 ± 20.3 μmol Fe (II)/mg extract) and selective antiproliferative effect (IC50: 25.75 ± 1.5 μg/mL). F7 induced apoptosis in concentration- and time-dependent manner and caused cell cycle arrest at S-phase. Upregulation of proapoptotic genes (Bax, p53, and caspase-3) and downregulation of antiapoptotic gene, Bcl-2, were observed. In conclusion, F7 was antiproliferative to HepG2 cells by inducing apoptosis, cell cycle arrest, and via antioxidative effects.
    Matched MeSH terms: Antioxidants/chemistry
  18. Jamila N, Khairuddean M, Yeong KK, Osman H, Murugaiyah V
    J Enzyme Inhib Med Chem, 2015 Feb;30(1):133-9.
    PMID: 24666300 DOI: 10.3109/14756366.2014.895720
    Context: Garcinia hombroniana Pierre, known as manggis hutan in Malaysia is a rich source of xanthones and benzophenones.
    Matched MeSH terms: Antioxidants/chemistry*
  19. Bhat R, Stamminger R
    Food Sci Technol Int, 2015 Jul;21(5):354-63.
    PMID: 24867944 DOI: 10.1177/1082013214536708
    Freshly prepared, hand-pressed strawberry fruit juice was exposed to ultraviolet radiation (254 nm) at room temperature (25 ℃ ± 1 ℃) for 15, 30 and 60 min with 0 min serving as control. Results revealed decrease in pH, total soluble solids and titratable acidity, while colour parameters (L*, a* and b* values) and clarity of juice (% transmittance) increased significantly. All the results corresponded to exposure time to ultraviolet radiation. Bioactive compounds (total phenolics, ascorbic acid and anthocyanins) decreased along with a recorded reduction in polyphenol oxidase enzyme and 1,1-diphenyl-2-picryl hydrazyl radical scavenging activities, which were again dependent on exposure time. Results on the microbial studies showed significant reduction by 2-log cycles in aerobic plate count as well as in total yeast and mould counts. Though negative results were observed for certain parameters, this is the first time it was endeavoured to demonstrate the impact of ultraviolet radiation radiation on freshly prepared, hand-pressed strawberries juice.
    Matched MeSH terms: Antioxidants/chemistry
  20. Yea CS, Ebrahimpour A, Hamid AA, Bakar J, Muhammad K, Saari N
    Food Funct, 2014 May;5(5):1007-16.
    PMID: 24658538 DOI: 10.1039/c3fo60667h
    Hypertension is one of the major causes of cardiovascular-related diseases, which is highly associated with angiotensin-I-converting enzyme (ACE) activity and oxidative stress. In this study, winged bean seed (WBS), a potential source of protein, was utilised for the production of bifunctional proteolysate and biopeptides with ACE inhibitory and antioxidative properties. An enzymatic approach was applied, coupled with pretreatment of shaking and centrifuging techniques to remove endogenous ACE inhibitors prior to proteolysis. ACE inhibition reached its highest activity, 78.5%, after 12 h proteolysis while antioxidative activities, determined using assays involving DPPH˙ radical scavenging activity and metal ion-chelating activity, reached peaks of 65.0% and 65.7% at 8 h and 14 h, respectively. The said bioactivities were proposed to share some common structural requirements among peptides. A two-dimensional approach was employed for characterisation of effective peptides based on hydrophobicity, using RP-HPLC, and isoelectric property, using isoelectric focusing technique. Results revealed that acidic and basic peptides with partially higher hydrophobicity provided higher ACE inhibition activity than did neutral peptides. Finally, by using Q-TOF mass spectrometry, two peptide sequences (YPNQKV and FDIRA) with ACE inhibitory and antioxidative activities were successfully matched with a database. This study indicates that the WBS proteolysate can be a potential bifunctional food ingredient as the identified biopeptides demonstrated both ACE inhibitory and antioxidative activities in vitro.
    Matched MeSH terms: Antioxidants/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links