Displaying publications 141 - 160 of 995 in total

Abstract:
Sort:
  1. Williams MJ
    Ambio, 2002 Jun;31(4):337-9.
    PMID: 12174604
    Matched MeSH terms: Ecosystem*
  2. MOHD ASLAN MOLENG, AHMAD FAIZAL AHMAD FUAD, MOHD HAFIZI SAID
    MyJurnal
    Trawling is a method of catching fish in a large volume where fish net is pulled through water using one or two boats. Bottom trawling is where the nets are pulled over or close to seabed and can affect the subsea pipeline if found along the route. Therefore, the objective of this study was to determine the impact of pull-over to selected subsea pipelines in Sabah and Labuan waters. This study involved four oil and gas pipelines in Sabah and Labuan waters from the oil fields to shore terminals. The research started with obtaining data of the pipelines and specification of trawl gear in Sabah. Fishing trawler traffic data along the pipelines route was determined by AIS system and site observation to determine the density of the trawlers. Trawl gear pull-over load was calculated using DNV algorithm and the inputs were trawl gear specification ^and fishing trawl speed. The severity was based on pull-over load calculated and pipeline yield stress. Then frequency was based on AIS data and density of fishing trawl per area. Based on the comparison between trawl pull-over load and yield strength/stress, the effect of trawl board pull-over is considered as minor, which is the lowest in the severity index.
    Matched MeSH terms: Ecosystem
  3. Ikram Ismail, Siti-Ariza Aripin
    MyJurnal
    Danio rerio or commonly known as zebrafish are a very popular fish among scientists and also a well-known vertebrate model species widely used in research. Zebrafish, are also a popular species among aquarists and have been put in aquariums all around the world as ornamental fish. The acid rain phenomenon has lowered the pH level of the wild habitat of zebrafish by shifting it to a more acidic pH level. This study was carried out to observe the effect of low pH level on the reproductive performance of zebrafish. The zebrafish were quarantined for a week to make sure they were healthy to be used in the experiment. The zebrafish were reared continuously for 14 days in three different pH treatments T1 (pH 2-4), T2 (pH 4-6), T3 (pH 6-8)). T3 (pH 6-8) was used as the control treatment. Hydrochloric acid (HCl) was used to control the pH level of treatments T1 (pH 2-4), T2 (pH 4-6), T3 (pH 6-8) with three replicates of each treatment. The male chasing female frequency was significant (p: 0.0001) and the data showed the highest frequency (2568.000±140.6272) at treatment 3 (pH 6-8). For the spawning frequency of zebrafish, treatment 3 (pH 6-8) showed the highest value (4.000±0.5774) followed by treatment 2 and treatment 1 and the data was significant (p: 0.0004). The fertilisation rate of the zebrafish was significant (p: 0.0001) and the highest was shown at T2 (pH 4-6) with 89.8018±0.3782, followed by T3 and treatment T1. For the hatching rate of the zebrafish, the data collected were significant (p: 0.0002) and the highest value of 2.9350±0.4070 was shown at T3 (pH 6-8), followed by T2 (pH 4-6) and T1 (pH 2-4). The overall result showed that pH 2-4 had the worst effect on the reproductive performance of zebrafish. Therefore, low pH has a significant effect on reducing the reproductive performance of zebrafish. The local fish population can be affected by the decrease of pH level due to acid rains and chemical waste pollution.
    Matched MeSH terms: Ecosystem
  4. Arguelles ED
    Trop Life Sci Res, 2019 Jan;30(1):1-21.
    PMID: 30847030 DOI: 10.21315/tlsr2019.30.1.1
    Taxonomic study on the composition of epiphytic algae living on submerged leaf and root tissues of macrophyte Eichhornia crassipes (Mart.) Solms-Loubach, found at Laguna de Bay, Philippines was conducted. In total, 21 algal taxa were identified: seven Cyanophyceae, six Euglenophyceae, five Chlorophyceae, two Trebouxiophyceae and one Klebsormidiophyceae. Of these taxa, the occurrence of two rare cyanobacteria, Pseudanabaena minima (G.S. An) Anagnostidis and Synechococcus nidulans (Pringsheim) Komárek are reported for the first time in the Philippines. Two species are also reported here for the first time in the Philippines based on current taxonomic nomenclature and these are Pseudopediastrum boryanum (Turpin) E. Hegewald, Phormidium granulatum (Gardner) Anagnostidis which were based on the former names of Pediastrum boryanum (Turpin) Meneghini and Oscillatoria granulata Gardner, respectively. These taxonomic records are considered important basal information in enriching the knowledge about the diversity and habitat distribution of cyanobacteria and microalgae on macrophytes found in freshwater habitats in the Philippines.
    Matched MeSH terms: Ecosystem
  5. Yavari S, Malakahmad A, Sapari NB, Yavari S
    J Environ Manage, 2017 Feb 18;193:201-210.
    PMID: 28226259 DOI: 10.1016/j.jenvman.2017.02.035
    Imidazolinones are a family of herbicides that are used to control a broad range of weeds. Their high persistence and leaching potential make them probable risk to the ecosystems. In this study, biochar, the biomass-derived solid material, was produced from oil palm empty fruit bunches (EFB) and rice husk (RH) through pyrolysis process. Feedstock and pyrolysis variables can control biochar sorption capacity. Therefore, the present study attempts to evaluate effects of three pyrolysis variables (temperature, heating rate and retention time) on abilities of biochars for removal of imazapic and imazapyr herbicides from soil. Response surface methodology (RSM) was used for optimizing the variables to achieve maximum sorption performance of the biochars. Experimental data were interpreted accurately by quadratic models. Based on the results, sorption capacities of both biochars raised when temperature decreased to 300 °C, mainly because of increased biochars effective functionality in sorption of polar molecules. Heating rate of 3°C/min provided optimum conditions to maximize the sorption capacities of both biochars. Retention time of about 1 h and 3 h were found to be the best for EFB and RH biochars, respectively. EFB biochar was more efficient in removal of the herbicides, especially imazapyr due to its chemical composition and higher polarity index (0.42) rather than RH biochar (0.39). Besides, higher cation exchange capacity (CEC) values of EFB biochar (83.90 cmolc/kg) in comparison with RH biochar (70.73 cmolc/kg) represented its higher surface polarity effective in sorption of the polar herbicides.
    Matched MeSH terms: Ecosystem
  6. Mateos-Molina D, Ben Lamine E, Antonopoulou M, Burt JA, Das HS, Javed S, et al.
    Mar Pollut Bull, 2021 Jun;167:112319.
    PMID: 33845352 DOI: 10.1016/j.marpolbul.2021.112319
    The United Arab Emirates (UAE) host valuable coastal and marine biodiversity that is subjected to multiple pressures under extreme conditions. To mitigate impacts on marine ecosystems, the UAE protects almost 12% of its Exclusive Economic Zone. This study mapped and validated the distribution of key coastal and marine habitats, species and critical areas for their life cycle in the Gulf area of the UAE. We identified gaps in the current protection of these ecological features and assessed the quality of the data used. The overall dataset showed good data quality, but deficiencies in information for the coastline of the north-western emirates. The existing protected areas are inadequate to safeguard key ecological features such as mangroves and coastal lagoons. This study offers a solid basis to understand the spatial distribution and protection of marine biodiversity in the UAE. This information should be considered for implementing effective conservation planning and ecosystem-based management.
    Matched MeSH terms: Ecosystem*
  7. Yeang HY
    New Phytol, 2007;175(2):283-9.
    PMID: 17587376
    How tropical trees flower synchronously near the equator in the absence of significant day length variation or other meteorological cues has long been a puzzle. The rubber tree (Hevea brasiliensis) is used as a model to investigate this phenomenon. The annual cycle of solar radiation intensity is shown to correspond closely with the flowering of the rubber tree planted near the equator and in the subtropics. Unlike in temperate regions, where incoming solar radiation (insolation) is dependent on both day length and radiation intensity, insolation at the equator is due entirely to the latter. Insolation at the upper atmosphere peaks twice a year during the spring and autumn equinoxes, but the actual solar radiation that reaches the ground is attenuated to varying extents in different localities. The rubber tree shows one or two flowering seasons a year (with major and minor seasons in the latter) in accordance with the solar radiation intensity received. High solar radiation intensity, and in particular bright sunshine (as distinct from prolonged diffuse radiation), induces synchronous anthesis and blooming in Hevea around the time of the equinoxes. The same mechanism may be operational in other tropical tree species.
    Matched MeSH terms: Ecosystem
  8. Chen Y, McConkey KR, Fan P
    Oecologia, 2023 Aug;202(4):715-727.
    PMID: 37553533 DOI: 10.1007/s00442-023-05430-w
    Mutualistic and antagonistic plant-animal interactions differentially contribute to the maintenance of species diversity in ecological communities. Although both seed dispersal and predation by fruit-eating animals are recognized as important drivers of plant population dynamics, the mechanisms underlying how seed dispersers and predators jointly affect plant diversity remain largely unexplored. Based on mediating roles of seed size and species abundance, we investigated the effects of seed dispersal and predation by two sympatric primates (Nomascus concolor and Trachypithecus crepusculus) on local plant recruitment in a subtropical forest of China. Over a 26 month period, we confirmed that these primates were functionally distinct: gibbons were legitimate seed dispersers who dispersed seeds of 44 plant species, while langurs were primarily seed predators who destroyed seeds of 48 plant species. Gibbons dispersed medium-seeded species more effectively than small- and large-seeded species, and dispersed more seeds of rare species than common and dominant species. Langurs showed a similar predation rate across different sizes of seeds, but destroyed a large number of seeds from common species. Due to gut passage effects, gibbons significantly shortened the duration of seed germination for 58% of the dispersed species; however, for 54% of species, seed germination rates were reduced significantly. Our study underlined the contrasting contributions of two primate species to local plant recruitment processes. By dispersing rare species and destroying the seeds of common species, both primates might jointly maintain plant species diversity. To maintain healthy ecosystems, the conservation of mammals that play critical functional roles needs to receive further attention.
    Matched MeSH terms: Ecosystem
  9. Sundram S, Meon S, Seman IA, Othman R
    J Microbiol, 2011 Aug;49(4):551-7.
    PMID: 21887636 DOI: 10.1007/s12275-011-0489-3
    Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.
    Matched MeSH terms: Ecosystem
  10. Yahya MS, Syafiq M, Ashton-Butt A, Ghazali A, Asmah S, Azhar B
    Ecol Evol, 2017 08;7(16):6314-6325.
    PMID: 28861235 DOI: 10.1002/ece3.3205
    Monoculture farming is pervasive in industrial oil palm agriculture, including those RSPO plantations certified as sustainably managed. This farming practice does not promote the maintenance of farmland biodiversity. However, little scientific attention has been given to polyculture farming in oil palm production landscapes. Polyculture farming is likely to increase the floristic diversity and stand structural complexity that underpins biodiversity. Mist nets were used to sample birds at 120 smallholdings in Peninsular Malaysia. At each site, 12 vegetation structure characteristics were measured. We compared bird species richness, abundance, and composition between monoculture and polyculture smallholdings and used predictive models to examine the effects of habitat quality on avian biodiversity. Bird species richness was significantly greater in polyculture than that of monoculture smallholdings. The number of fallen and standing, dead oil palms were also important positive predictors of species richness. Bird abundance was also strongly increased by standing and dead oil palms and decreased with oil palm stand height. Our results indicate that polyculture farming can improve bird species richness in oil palm production landscapes. In addition, key habitat variables that are closely associated with farming practices, such as the removal of dead trees, should and can be managed by oil palm growers in order to promote biodiversity. To increase the sustainability of oil palm agriculture, it is imperative that stakeholders modify the way oil palms are currently planted and managed. Our findings can guide policy makers and certification bodies to promote oil palm production landscapes that will function more sustainably and increase existing biodiversity of oil palm landscapes.
    Matched MeSH terms: Ecosystem
  11. Cyranoski D
    Nature, 2003 Dec 11;426(6967):592.
    PMID: 14668824
    Matched MeSH terms: Ecosystem*
  12. Cazzolla Gatti R, Liang J, Velichevskaya A, Zhou M
    Sci Total Environ, 2019 Feb 20;652:48-51.
    PMID: 30359800 DOI: 10.1016/j.scitotenv.2018.10.222
    The globalization of the palm oil trade poses a menace to the ecosystem integrity of Southeast Asia. In this short communication, we briefly discuss why palm oil certifications may have failed as an effective means to halt forest degradation and biodiversity loss. From a comparison of multiple new datasets, we analysed recent tree loss in Indonesia, Malaysia, and Papua New Guinea, and discovered that, from 2001 to 2016, about 40% of the area located in certified concessions suffered from habitat degradation, deforestation, fires, or other tree damages. Certified concessions have been subject to more tree removals than non-certified ones. We also detect significant tree loss before and after the start of certification schemes. Beyond non-governmental organisations' concern that Roundtable on Sustainable Palm Oil (RSPO) and Palm Oil Innovation Group (POIG) certifications allow ongoing clearance of any forest not identified as of high conservation values (HCV) or high carbon stock (HCS), we suggest an alarming and previously overlooked situation, such as that current "sustainable palm oil" is often associated with recent habitat degradation and forest loss. In other words, certified palm oil production may not be so sustainable.
    Matched MeSH terms: Ecosystem
  13. Edwards FA, Edwards DP, Sloan S, Hamer KC
    PLoS One, 2014;9(3):e91695.
    PMID: 24638038 DOI: 10.1371/journal.pone.0091695
    Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture.
    Matched MeSH terms: Ecosystem
  14. Razak IS, Latif MT, Jaafar SA, Khan MF, Mushrifah I
    Environ Sci Pollut Res Int, 2015 Apr;22(8):6024-33.
    PMID: 25382497 DOI: 10.1007/s11356-014-3781-z
    This study was conducted to determine the composition of surfactants in atmospheric aerosols and rainwater in the vicinity of Lake Chini, Malaysia. Samples of atmospheric aerosol and rainwater were collected between March and September 2011 using a high volume air sampler (HVAS) and glass bottles equipped with funnel. Colorimetric analysis was undertaken to determine the concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The water-soluble ionic compositions were determined using inductively coupled plasma mass spectrometry for cations (Na, K, Mg and Ca) and ion chromatography equipped with a conductivity detector for anions (F(-), Cl(-), NO3(-), and SO4(2-)) and the Nessler Method was used to obtain the NH4(+) concentrations. The source apportionment of MBAS and DBAS in atmospheric aerosols was identified using a combination of principal component analysis (PCA) and multiple linear regression (MLR). The results revealed that the concentrations of surfactants in atmospheric aerosols and rainwater were dominated by anionic surfactants as MBAS. The concentration of surfactants as MBAS and DBAS was dominated in fine mode compared to coarse mode aerosols. Using PCA/MLR analysis, two major sources of atmospheric surfactants to Lake Chini were identified as soil dust (75 to 93%) and biomass burning (2 to 22%).
    Matched MeSH terms: Ecosystem
  15. Salleh Hudin N, De Neve L, Strubbe D, Fairhurst GD, Vangestel C, Peach WJ, et al.
    Ecol Evol, 2017 08;7(16):6163-6171.
    PMID: 28861222 DOI: 10.1002/ece3.3114
    Several studies on birds have proposed that a lack of invertebrate prey in urbanized areas could be the main cause for generally lower levels of breeding success compared to rural habitats. Previous work on house sparrows Passer domesticus found that supplemental feeding in urbanized areas increased breeding success but did not contribute to population growth. Here, we hypothesize that supplementary feeding allows house sparrows to achieve higher breeding success but at the cost of lower nestling quality. As abundant food supplies may permit both high- and low-quality nestlings to survive, we also predict that within-brood variation in proxies of nestling quality would be larger for supplemental food broods than for unfed broods. As proxies of nestling quality, we considered feather corticosterone (CORT f), body condition (scaled mass index, SMI), and tarsus-based fluctuating asymmetry (FA). Our hypothesis was only partially supported as we did not find an overall effect of food supplementation on FA or SMI. Rather, food supplementation affected nestling phenotype only early in the breeding season in terms of elevated CORT f levels and a tendency for more variable within-brood CORT f and FA. Early food supplemented nests therefore seemed to include at least some nestlings that faced increased stressors during development, possibly due to harsher environmental (e.g., related to food and temperature) conditions early in the breeding season that would increase sibling competition, especially in larger broods. The fact that CORT f was positively, rather than inversely, related to nestling SMI further suggests that factors influencing CORT f and SMI are likely operating over different periods or, alternatively, that nestlings in good nutritional condition also invest in high-quality feathers.
    Matched MeSH terms: Ecosystem
  16. Luskin MS, Albert WR, Tobler MW
    Nat Commun, 2017 12 05;8(1):1783.
    PMID: 29208916 DOI: 10.1038/s41467-017-01656-4
    The continuing development of improved capture-recapture (CR) modeling techniques used to study apex predators has also limited robust temporal and cross-site analyses due to different methods employed. We develop an approach to standardize older non-spatial CR and newer spatial CR density estimates and examine trends for critically endangered Sumatran tigers (Panthera tigris sumatrae) using a meta-regression of 17 existing densities and new estimates from our own fieldwork. We find that tiger densities were 47% higher in primary versus degraded forests and, unexpectedly, increased 4.9% per yr from 1996 to 2014, likely indicating a recovery from earlier poaching. However, while tiger numbers may have temporarily risen, the total potential island-wide population declined by 16.6% from 2000 to 2012 due to forest loss and degradation and subpopulations are significantly more fragmented. Thus, despite increasing densities in smaller parks, we conclude that there are only two robust populations left with >30 breeding females, indicating Sumatran tigers still face a high risk of extinction unless deforestation can be controlled.
    Matched MeSH terms: Ecosystem
  17. Hu J, Neoh KB, Appel AG, Lee CY
    PMID: 22085890 DOI: 10.1016/j.cbpa.2011.10.028
    The foraging patterns of termites are strongly related to physiological limits in overcoming desiccation stress. In this study, we examined moisture preferences and physiological characteristics of Macrotermes carbonarius (Hagen) and M. gilvus (Hagen) as both exhibit conspicuous patterns of foraging activity. Despite both species showing no significant differences in calculated cuticular permeability, and percentage of total body water, they differed greatly in rate of water loss and surface area to volume ratio. For example, M. carbonarius which had a lower surface area to volume ratio (29.26-53.66) showed lower rate of water loss and percentage of total body water loss. This also resulted in higher LT(50) when exposed to extreme conditions (≈2% RH). However, contrasting observations were made in M. gilvus that has smaller size with higher surface area to volume ratio of 40.28-69.75. It is likely that the standard equation for calculating insect surface areas is inadequate for these termite species. The trend was further supported by the result of a moisture preference bioassay that indicated M. carbonarius had a broader range of moisture preference (between 5% and 20%) than M. gilvus which had a relatively narrow moisture preference (only 20%). These results explain why M. carbonarius can tolerate desiccation stress for a longer period foraging above-ground in the open air; while M. gilvus only forages below ground or concealed within foraging mud tubes.
    Matched MeSH terms: Ecosystem*
  18. Chang KY, Riley WJ, Knox SH, Jackson RB, McNicol G, Poulter B, et al.
    Nat Commun, 2021 04 15;12(1):2266.
    PMID: 33859182 DOI: 10.1038/s41467-021-22452-1
    Wetland methane (CH4) emissions ([Formula: see text]) are important in global carbon budgets and climate change assessments. Currently, [Formula: see text] projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent [Formula: see text] temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that [Formula: see text] are often controlled by factors beyond temperature. Here, we evaluate the relationship between [Formula: see text] and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between [Formula: see text] and temperature, suggesting larger [Formula: see text] sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments.
    Matched MeSH terms: Ecosystem
  19. Muthukumaravel K, Vasanthi N, Stalin A, Alam L, Santhanabharathi B, Musthafa MS
    Environ Sci Pollut Res Int, 2021 Mar;28(11):13752-13760.
    PMID: 33191468 DOI: 10.1007/s11356-020-11434-3
    Acute toxicity (96 h LC50) of phenol was analyzed in the cat fish Mystus vittatus in static bio-assay over a 96-h exposure period using probit method. The 24, 48, 72, and 96 h LC50 values (with 95% confidence limits) of phenol for fingerling catfish were found out as 13.98, 13.17, 12.62, and 12.21 mg/l respectively. Investigations pertaining to the histopathological sections have shown high degree of pathological lesions observed in various parts like gill, liver intestine, and kidney of the fish species. Analysis of gill section revealed observable changes in the experimental species such as fusion, malformation at the tip of secondary lamellae, vacuolation, hyperplasia, and epithelial damage. Exposure of phenol showed cytoplasmic vacuolation, tissue damage, and loss of hepatic cell wall in the liver of experimental organism. Lesions of tissue damage at the epithelial site, inflammation, and clumping of adjacent villi made of columnar epithelium have been observed in the intestine of fish, and also the excretory part of the fish kidney revealed various changes like glomerular atrophy, damage of Bowman's capsule, vacuolization, and degeneration of renal epithelium. The current study on histological changes observed in the experimental organisms has thrown light on the current scenario which poses threat and danger to the whole aquatic ecosystem, and this study plays a vital role in assessing the aquatic pollution.
    Matched MeSH terms: Ecosystem
  20. Zuhainy Ahmad Zhaki, Nazri Che Dom, Ibrahim Ahmed Alhothily
    MyJurnal
    Vector surveillance in high-rise buildings is important to predict and monitor the presence of vectors regarding their abundance and distribution. In this study, the infestation profile of Aedes aegypti and Aedes albopictus species in different environmental settings were investigated. Methods: Four high-rise apartments in four different localities were selected for ovitrap surveillance. Fifty ovitraps were placed in semi indoor and outdoor settings. Results: A total of 507 (42.8%) from ovitraps showed the presence of the Aedes species larvae. Out of these, 170 (33.5%) of the positive ovitraps were those placed in semi indoor and 337 (66.5%) in outdoor. Of the total 16,613 Aedes larvae found, 4,130 (24.9%) were from semi indoor, and 12,483 (75.1%) from outdoor. In terms of distribution, Ae. albopictus was predominantly found in outdoor environments (POI=87.5%; MLT=36.45 larvae). Ae. aegypti was also found in outdoor environments (POI=14.89%; MLT=8.26 larvae). There was a significant difference in POI for both Ae. aegypti and Ae. albopictus in the two different environments but no significant difference was observed in MLT, indicating that the density of the Aedes species in both environments was well distributed. Conclusion: In this study, the patterns of Aedes habitat in high-rise apartments were observed. This study has shown an invasion and adaptation of Aedes mosquitoes into the ecosystems of high-rise buildings. It can be concluded that housing designs and the condition of the surrounding environment affects the infestation profile and the distribution of Aedes mosquitoes.
    Matched MeSH terms: Ecosystem
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links