Displaying publications 141 - 160 of 362 in total

Abstract:
Sort:
  1. Gnanapragasam A
    Med J Malaya, 1971 Dec;26(2):112-5.
    PMID: 4260855
    Matched MeSH terms: Tropical Climate*
  2. CHIN J
    Tubercle, 1964 Jun;45:114-24.
    PMID: 14161910
    Matched MeSH terms: Tropical Climate*
  3. Haisman MF
    Br J Nutr, 1972 Mar;27(2):375-81.
    PMID: 5015257
    Matched MeSH terms: Tropical Climate*
  4. Sullivan MJP, Lewis SL, Affum-Baffoe K, Castilho C, Costa F, Sanchez AC, et al.
    Science, 2020 05 22;368(6493):869-874.
    PMID: 32439789 DOI: 10.1126/science.aaw7578
    The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (-9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth's climate.
    Matched MeSH terms: Tropical Climate*
  5. Numata S, Kachi N, Okuda T, Manokaran N
    Oecologia, 2017 Oct;185(2):213-220.
    PMID: 28852866 DOI: 10.1007/s00442-017-3935-z
    Parental distance and plant density dependence of seedling leaf turnover and survival was examined to investigate predictions of the Janzen-Connell hypothesis. The focal study species, Shorea macroptera is a canopy tree species in a lowland rain forest in peninsular Malaysia. We found that the peak of the distribution of plants shifted from 3-6 m to 6-9 m during the course of the change from seedling to sapling stage. The leaf demography of the seedlings was influenced by their distance from the adult tree and also by the seedling density. Although significant density- and distance dependence in leaf production was not detected, seedling leaf loss decreased with distance from the parent tree and with seedling density. Similarly, leaf damage was not found to be distance- or density-dependent, but net leaf gain of seedlings increased with distance from the parent tree. Although no significant distance- or density-dependence was evident in terms of leaf damage, significant distance dependence of the net leaf gain was found. Thus, we concluded that positive distance dependence in the leaf turnover of seedlings may gradually contribute to a shift in the distribution pattern of the progeny through reductions in growth and survivorship.
    Matched MeSH terms: Tropical Climate*
  6. Singh R, Sirisinghe RG
    Singapore Med J, 1999 Feb;40(2):84-7.
    PMID: 10414164
    To investigate the acute effects of an 18 km run on the haematological and plasma electrolyte parameters, in recreational runners under conditions of high temperatures and humidity.
    Matched MeSH terms: Tropical Climate*
  7. Morais RA, Siqueira AC, Smallhorn-West PF, Bellwood DR
    PLoS Biol, 2021 Nov;19(11):e3001435.
    PMID: 34727097 DOI: 10.1371/journal.pbio.3001435
    Spatial subsidies increase local productivity and boost consumer abundance beyond the limits imposed by local resources. In marine ecosystems, deeper water and open ocean subsidies promote animal aggregations and enhance biomass that is critical for human harvesting. However, the scale of this phenomenon in tropical marine systems remains unknown. Here, we integrate a detailed assessment of biomass production in 3 key locations, spanning a major biodiversity and abundance gradient, with an ocean-scale dataset of fish counts to predict the extent and magnitude of plankton subsidies to fishes on coral reefs. We show that planktivorous fish-mediated spatial subsidies are widespread across the Indian and Pacific oceans and drive local spikes in biomass production that can lead to extreme productivity, up to 30 kg ha-1 day-1. Plankton subsidies form the basis of productivity "sweet spots" where planktivores provide more than 50% of the total fish production, more than all other trophic groups combined. These sweet spots operate at regional, site, and smaller local scales. By harvesting oceanic productivity, planktivores bypass spatial constraints imposed by local primary productivity, creating "oases" of tropical fish biomass that are accessible to humans.
    Matched MeSH terms: Tropical Climate*
  8. How YF, Lee CY
    Med Vet Entomol, 2010 Jun;24(2):108-16.
    PMID: 20202109 DOI: 10.1111/j.1365-2915.2010.00852.x
    This study examined the fecundity, oviposition, nymphal development and longevity of field-collected samples of the tropical bedbug, Cimex hemipterus (Fabricius) (Hemiptera: Cimicidae). Under environmental conditions of 26+/-2 degrees C, 70 +/- 5% relative humidity and a 12-h photoperiod, with bloodmeals provided by a human host, six strains of tropical bedbug had a fecundity of up to 50 eggs per lifetime, over 11-14 oviposition cycles. Increased feeding frequency improved fecundity. After feeding and mating, adult females normally took 2-3 days to produce a first batch of eggs. The oviposition period lasted 2-7 days before cessation of the oviposition cycle. The egg incubation period usually lasted 5-7 days before the emergence of first instars. The nymphs underwent five stadia (the first four of which each took 3-4 days, whereas the last took 4-5 days) before becoming adults at a sex ratio of 1 : 1. More than five bloodmeals were required by the nymphs to ensure a successful moult. Unmated adults lived significantly longer than mated adults (P < 0.05). Unmated females lived up to almost 7 months, but the longevity of mated males and females did not differ significantly (P > 0.05).
    Matched MeSH terms: Tropical Climate*
  9. Sabri NSA, Zakaria Z, Mohamad SE, Jaafar AB, Hara H
    Microbes Environ, 2018 Jul 04;33(2):144-150.
    PMID: 29709895 DOI: 10.1264/jsme2.ME17181
    A soil cooling system that prepares soil for temperate soil temperatures for the growth of temperate crops under a tropical climate is described herein. Temperate agriculture has been threatened by the negative impact of temperature increases caused by climate change. Soil temperature closely correlates with the growth of temperate crops, and affects plant processes and soil microbial diversity. The present study focuses on the effects of soil temperatures on lettuce growth and soil microbial diversity that maintains the growth of lettuce at low soil temperatures. A model temperate crop, loose leaf lettuce, was grown on eutrophic soil under soil cooling and a number of parameters, such as fresh weight, height, the number of leaves, and root length, were evaluated upon harvest. Under soil cooling, significant differences were observed in the average fresh weight (P<0.05) and positive development of the roots, shoots, and leaves of lettuce. Janthinobacterium (8.142%), Rhodoplanes (1.991%), Arthrospira (1.138%), Flavobacterium (0.857%), Sphingomonas (0.790%), Mycoplana (0.726%), and Pseudomonas (0.688%) were the dominant bacterial genera present in cooled soil. Key soil fungal communities, including Pseudaleuria (18.307%), Phoma (9.968%), Eocronartium (3.527%), Trichosporon (1.791%), and Pyrenochaeta (0.171%), were also recovered from cooled soil. The present results demonstrate that the growth of temperate crops is dependent on soil temperature, which subsequently affects the abundance and diversity of soil microbial communities that maintain the growth of temperate crops at low soil temperatures.
    Matched MeSH terms: Tropical Climate*
  10. Tilker A, Abrams JF, Mohamed A, Nguyen A, Wong ST, Sollmann R, et al.
    Commun Biol, 2019;2:396.
    PMID: 31701025 DOI: 10.1038/s42003-019-0640-y
    Habitat degradation and hunting have caused the widespread loss of larger vertebrate species (defaunation) from tropical biodiversity hotspots. However, these defaunation drivers impact vertebrate biodiversity in different ways and, therefore, require different conservation interventions. We conducted landscape-scale camera-trap surveys across six study sites in Southeast Asia to assess how moderate degradation and intensive, indiscriminate hunting differentially impact tropical terrestrial mammals and birds. We found that functional extinction rates were higher in hunted compared to degraded sites. Species found in both sites had lower occupancies in the hunted sites. Canopy closure was the main predictor of occurrence in the degraded sites, while village density primarily influenced occurrence in the hunted sites. Our findings suggest that intensive, indiscriminate hunting may be a more immediate threat than moderate habitat degradation for tropical faunal communities, and that conservation stakeholders should focus as much on overhunting as on habitat conservation to address the defaunation crisis.
    Matched MeSH terms: Tropical Climate*
  11. Kenzo T, Ichie T, Watanabe Y, Yoneda R, Ninomiya I, Koike T
    Tree Physiol, 2006 Jul;26(7):865-73.
    PMID: 16585032
    Variations in leaf photosynthetic, morphological and biochemical properties with increasing plant height from seedlings to emergent trees were investigated in five dipterocarp species in a Malaysian tropical rain forest. Canopy openness increased significantly with tree height. Photosynthetic properties, such as photosynthetic capacity at light saturation, light compensation point, maximum rate of carboxylation and maximum rate of photosynthetic electron transport, all increased significantly with tree height. Leaf morphological and biochemical traits, such as leaf mass per area, palisade layer thickness, nitrogen concentration per unit area, chlorophyll concentration per unit dry mass and chlorophyll to nitrogen ratio, also changed significantly with tree height. Leaf properties had simple and significant relationships with tree height, with few intra- and interspecies differences. Our results therefore suggest that the photosynthetic capacity of dipterocarp trees depends on tree height, and that the trees adapt to the light environment by adjusting their leaf morphological and biochemical properties. These results should aid in developing models that can accurately estimate carbon dioxide flux and biomass production in tropical rain forests.
    Matched MeSH terms: Tropical Climate*
  12. Ordway EM, Asner GP
    Proc Natl Acad Sci U S A, 2020 04 07;117(14):7863-7870.
    PMID: 32229568 DOI: 10.1073/pnas.1914420117
    Nearly 20% of tropical forests are within 100 m of a nonforest edge, a consequence of rapid deforestation for agriculture. Despite widespread conversion, roughly 1.2 billion ha of tropical forest remain, constituting the largest terrestrial component of the global carbon budget. Effects of deforestation on carbon dynamics in remnant forests, and spatial variation in underlying changes in structure and function at the plant scale, remain highly uncertain. Using airborne imaging spectroscopy and light detection and ranging (LiDAR) data, we mapped and quantified changes in forest structure and foliar characteristics along forest/oil palm boundaries in Malaysian Borneo to understand spatial and temporal variation in the influence of edges on aboveground carbon and associated changes in ecosystem structure and function. We uncovered declines in aboveground carbon averaging 22% along edges that extended over 100 m into the forest. Aboveground carbon losses were correlated with significant reductions in canopy height and leaf mass per area and increased foliar phosphorus, three plant traits related to light capture and growth. Carbon declines amplified with edge age. Our results indicate that carbon losses along forest edges can arise from multiple, distinct effects on canopy structure and function that vary with edge age and environmental conditions, pointing to a need for consideration of differences in ecosystem sensitivity when developing land-use and conservation strategies. Our findings reveal that, although edge effects on ecosystem structure and function vary, forests neighboring agricultural plantations are consistently vulnerable to long-lasting negative effects on fundamental ecosystem characteristics controlling primary productivity and carbon storage.
    Matched MeSH terms: Tropical Climate*
  13. Razali SM, Marin A, Nuruddin AA, Shafri HZ, Hamid HA
    Sensors (Basel), 2014 May 07;14(5):8259-82.
    PMID: 24811079 DOI: 10.3390/s140508259
    Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions.
    Matched MeSH terms: Tropical Climate
  14. Kuznetsov AN, Kuznetsova SP
    Izv. Akad. Nauk. Ser. Biol., 2013 Mar-Apr;?(2):206-16.
    PMID: 23789426
    This study was carried out during the period 1989-2011. The following areas were included: Vietnam, Laos, Cambodia, Indonesia, and Malaysia. Climax tropical forest and anthropogenically transformed ecosystems, including those damaged by the chemical warfare program of the United States in Vietnam, were investigated. Some regularities in the structure dynamics and functioning of forests ecosystems under a tropical monsoon climate have been revealed. The principles of classification of tropical forests have been elaborated. The major results of investigation of the tropical monsoon forests in Vietnam are given.
    Matched MeSH terms: Tropical Climate
  15. Chow MF, Yusop Z, Toriman ME
    Water Sci Technol, 2013;67(8):1822-31.
    PMID: 23579839 DOI: 10.2166/wst.2013.048
    Urbanization and frequent storms play important roles in increasing faecal bacteria pollution, especially for tropical urban catchments. However, only little information on the faecal bacteria levels from different land use types and the factors that influence bacteria concentrations is available. Thus, the objectives of this study were to quantify the levels and transport mechanism of faecal coliforms (FCs) from residential and commercial catchments. Stormwaters were sampled and the runoff flow rates were measured from both catchments during four storm events in Skudai, Malaysia. The samples were then analysed for FC, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids (TSS) and ammoniacal-nitrogen (NH3-N) concentrations. Intra-storm and inter-storm characteristics of FC bacteria were investigated in order to identify the level and transport pattern of FC. The commercial catchment showed significantly higher event mean concentration (EMC) of FC than the residential catchment. For the residential catchment, the highest bacterial concentrations occurred during the early part of stormwater runoff with peak concentrations usually preceding the peak flow. First flush effect was more prevalent at the residential catchment.
    Matched MeSH terms: Tropical Climate
  16. Lee CW, Lim JH, Heng PL
    Environ Monit Assess, 2013 Dec;185(12):9697-704.
    PMID: 23748919 DOI: 10.1007/s10661-013-3283-3
    We sampled extensively (29 stations) at the Klang estuarine system over a 3-day scientific expedition. We measured physical and chemical variables (temperature, salinity, dissolved oxygen, total suspended solids, dissolved inorganic nutrients) and related them to the spatial distribution of phototrophic picoplankton (Ppico). Multivariate analysis of variance of the physicochemical variables showed the heterogeneity of the Klang estuarine system where the stations at each transect were significantly different (Rao's F₁₈, ₃₆ = 8.401, p < 0.001). Correlation analyses also showed that variables related to Ppico abundance and growth were mutually exclusive. Distribution of Ppico was best explained by the physical mixing between freshwater and seawater whereas Ppico growth was correlated with temperature.
    Matched MeSH terms: Tropical Climate
  17. Isa NM, Aris AZ, Sulaiman WN
    Sci Total Environ, 2012 Nov 1;438:414-25.
    PMID: 23022725 DOI: 10.1016/j.scitotenv.2012.08.069
    Small islands are susceptible to anthropogenic and natural activities, especially in respect of their freshwater supply. The freshwater supply in small islands may be threatened by the encroachment of seawater into freshwater aquifers, usually caused by over pumping. This study focused on the hydrochemistry of the Kapas Island aquifer, which controls the groundwater composition. Groundwater samples were taken from six constructed boreholes for the analysis and measurement of its in-situ and major ions. The experimental results show a positive and significant correlation between Na-Cl (r=0.907; p<0.01), which can be defined as the effect of salinization. The mechanisms involved in groundwater chemistry changes were ion exchange and mineralization. These processes can be demonstrated using Piper's diagram in which the water type has shifted into a Na-HCO(3) water type from a Ca-HCO(3) water type. Saturation indices have been calculated in order to determine the saturation condition related to dissolution or the precipitation state of the aquifer bedrock. About 76% of collected data (n=108) were found to be in the dissolution process of carbonate minerals. Moreover, the correlation between total CEC and Ca shows a positive and strong relationship (r=0.995; p<0.01). This indicates that the major mineral component in Kapas Island is Ca ion, which contributes to the groundwater chemical composition. The output of this research explains the chemical mechanism attributed to the groundwater condition of the Kapas Island aquifer.
    Matched MeSH terms: Tropical Climate
  18. Ewers RM, Didham RK, Fahrig L, Ferraz G, Hector A, Holt RD, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3292-302.
    PMID: 22006969 DOI: 10.1098/rstb.2011.0049
    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.
    Matched MeSH terms: Tropical Climate
  19. Yamashita S, Hattori T, Ohkubo T, Nakashizuka T
    Mycol. Res., 2009 Oct;113(Pt 10):1200-7.
    PMID: 19682573 DOI: 10.1016/j.mycres.2009.08.004
    The spatial distribution of basidiocarps provides much information on the dispersal abilities, habitat preferences, and inter- and intraspecific interactions of aphyllophoraceous fungi. To reveal the spatial distribution and resource utilization patterns of aphyllophoraceous fungi in Malaysia, we conducted field observations in a primary forest in 2006 and analyzed the relationships between the abundance of eight dominant fungal species and various environmental factors. The topographical characteristics were significantly patchily distributed at the 100-m scale, whereas woody debris and most fungal species were distributed randomly. Although the dominant fungal species differed among the decay classes and diameters of the woody debris, the abundance of a few dominant species was significantly correlated with environmental factors. Although the latter factors might affect the spatial distribution of these fungi, the effects appear to be so small that they would not create an aggregated distribution at a few 100-m scales.
    Matched MeSH terms: Tropical Climate
  20. Tani N, Tsumura Y, Kado T, Taguchi Y, Lee SL, Muhammad N, et al.
    Ann Bot, 2009 Dec;104(7):1421-34.
    PMID: 19808773 DOI: 10.1093/aob/mcp252
    BACKGROUND AND AIMS: Knowledge of pollen dispersal patterns and variation of fecundity is essential to understanding plant evolutionary processes and to formulating strategies to conserve forest genetic resources. Nevertheless, the pollen dispersal pattern of dipterocarp, main canopy tree species in palaeo-tropical forest remains unclear, and flowering intensity variation in the field suggests heterogeneity of fecundity.

    METHODS: Pollen dispersal patterns and male fecundity variation of Shorea leprosula and Shorea parvifolia ssp. parvifolia on Peninsular Malaysian were investigated during two general flowering seasons (2001 and 2002), using a neighbourhood model modified by including terms accounting for variation in male fecundity among individual trees to express heterogeneity in flowering.

    KEY RESULTS: The pollen dispersal patterns of the two dipterocarp species were affected by differences in conspecific tree flowering density, and reductions in conspecific tree flowering density led to an increased selfing rate. Active pollen dispersal and a larger number of effective paternal parents were observed for both species in the season of greater magnitude of general flowering (2002).

    CONCLUSIONS: The magnitude of general flowering, male fecundity variation, and distance between pollen donors and mother trees should be taken into account when attempting to predict the effects of management practices on the self-fertilization and genetic structure of key tree species in tropical forest, and also the sustainability of possible management strategies, especially selective logging regimes.

    Matched MeSH terms: Tropical Climate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links