Displaying publications 161 - 180 of 432 in total

Abstract:
Sort:
  1. Kamaruzaman NA, Kardia E, Kamaldin N', Latahir AZ, Yahaya BH
    Biomed Res Int, 2013;2013:691830.
    PMID: 23653896 DOI: 10.1155/2013/691830
    No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, especially in the case of asthma, are comparable with those that occur in humans. The allergic rabbit model has been used extensively in drug screening tests, and this model and humans appear to be sensitive to similar drugs. In addition, recent studies have shown that the rabbit serves as a good platform for cell delivery for the purpose of stem-cell-based therapy.
  2. Adhikary AK, Hanaoka N, Fujimoto T
    Biomed Res Int, 2014;2014:363790.
    PMID: 24734232 DOI: 10.1155/2014/363790
    Restriction endonuclease analyses (REAs) constitute the only inexpensive molecular approach capable of typing and characterizing human adenovirus (HAdV) strains based on the entire genome. However, the application of this method is limited by the need for time-consuming and labor-intensive procedures. We herein developed a simple and cost-effective REA for assessing HAdV. The method consists of (1) simple and cost-effective DNA extraction, (2) fast restriction endonuclease (RE) digestion, and (3) speedy mini agarose gel electrophoresis. In this study, DNA was isolated according to the kit-based method and 21.0 to 28.0  μg of viral DNA was extracted from prototypes (HAdV-1, HAdV-3, HAdV-4, and HAdV-37) in each flask. The amount of DNA ranged from 11.4 to 57.0  μg among the HAdV-3 (n=73) isolates. The obtained viral DNA was found to be applicable to more than 10 types of REAs. Fast-cut restriction endonucleases (REs) were able to digest the DNA within 15 minutes, and restriction fragments were easily separated via horizontal mini agarose gel electrophoresis. The whole procedure for 10 samples can be completed within approximately six hours (the conventional method requires at least two days). These results show that our REA is potentially applicable in many laboratories in which HAdVs are isolated.
  3. Shafiu Kamba A, Zakaria ZA
    Biomed Res Int, 2014;2014:215097.
    PMID: 24734228 DOI: 10.1155/2014/215097
    Calcium carbonate (CaCO3) nanocrystals derived from cockle shells emerge to present a good concert in bone tissue engineering because of their potential to mimic the composition, structure, and properties of native bone. The aim of this study was to evaluate the biological response of CaCO3 nanocrystals on hFOB 1.19 and MC3T3 E-1 osteoblast cells in vitro. Cell viability and proliferation were assessed by MTT and BrdU assays, and LDH was measured to determine the effect of CaCO3 nanocrystals on cell membrane integrity. Cellular morphology was examined by SEM and fluorescence microscopy. The results showed that CaCO3 nanocrystals had no toxic effects to some extent. Cell proliferation, alkaline phosphatase activity, and protein synthesis were enhanced by the nanocrystals when compared to the control. Cellular interactions were improved, as indicated by SEM and fluorescent microscopy. The production of VEGF and TGF-1 was also affected by the CaCO3 nanocrystals. Therefore, bio-based CaCO3 nanocrystals were shown to stimulate osteoblast differentiation and improve the osteointegration process.
  4. Ebrahimi M, Rajion MA, Goh YM, Sazili AQ, Schonewille JT
    Biomed Res Int, 2013;2013:194625.
    PMID: 23484090 DOI: 10.1155/2013/194625
    This study was conducted to determine the effects of feeding oil palm frond silage based diets with added linseed oil (LO) containing high α -linolenic acid (C18:3n-3), namely, high LO (HLO), low LO (LLO), and without LO as the control group (CON) on the fatty acid (FA) composition of subcutaneous adipose tissue and the gene expression of peroxisome proliferator-activated receptor (PPAR) α , PPAR- γ , and stearoyl-CoA desaturase (SCD) in Boer goats. The proportion of C18:3n-3 in subcutaneous adipose tissue was increased (P < 0.01) by increasing the LO in the diet, suggesting that the FA from HLO might have escaped ruminal biohydrogenation. Animals fed HLO diets had lower proportions of C18:1 trans-11, C18:2n-6, CLA cis-9 trans-11, and C20:4n-6 and higher proportions of C18:3n-3, C22:5n-3, and C22:6n-3 in the subcutaneous adipose tissue than animals fed the CON diets, resulting in a decreased n-6:n-3 fatty acid ratio (FAR) in the tissue. In addition, feeding the HLO diet upregulated the expression of PPAR- γ (P < 0.05) but downregulated the expression of SCD (P < 0.05) in the adipose tissue. The results of the present study show that LO can be safely incorporated in the diets of goats to enrich goat meat with potential health beneficial FA (i.e., n-3 FA).
  5. Elias MH, Baba AA, Husin A, Sulong S, Hassan R, Sim GA, et al.
    Biomed Res Int, 2013;2013:129715.
    PMID: 23484077 DOI: 10.1155/2013/129715
    Development of resistance to imatinib mesylate (IM) in chronic myeloid leukemia (CML) patients has emerged as a significant clinical problem. The observation that increased epigenetic silencing of potential tumor suppressor genes correlates with disease progression in some CML patients treated with IM suggests a relationship between epigenetic silencing and resistance development. We hypothesize that promoter hypermethylation of HOXA4 could be an epigenetic mechanism mediating IM resistance in CML patients. Thus a study was undertaken to investigate the promoter hypermethylation status of HOXA4 in CML patients on IM treatment and to determine its role in mediating resistance to IM. Genomic DNA was extracted from peripheral blood samples of 95 CML patients (38 good responders and 57 resistant) and 12 normal controls. All samples were bisulfite treated and analysed by methylation-specific high-resolution melt analysis. Compared to the good responders, the HOXA4 hypermethylation level was significantly higher (P = 0.002) in IM-resistant CML patients. On comparing the risk, HOXA4 hypermethylation was associated with a higher risk for IM resistance (OR 4.658; 95% CI, 1.673-12.971; P = 0.003). Thus, it is reasonable to suggest that promoter hypermethylation of HOXA4 gene could be an epigenetic mechanism mediating IM resistance in CML patients.
  6. Mohd Ali N, Mohd Yusof H, Long K, Yeap SK, Ho WY, Beh BK, et al.
    Biomed Res Int, 2013;2013:693613.
    PMID: 23484140 DOI: 10.1155/2013/693613
    Mung bean is a hepatoprotective agent in dietary supplements. Fermentation and germination processes are well recognized to enhance the nutritional values especially the concentration of active compounds such as amino acids and GABA of various foods. In this study, antioxidant and hepatoprotective effects of freeze-dried mung bean and amino-acid- and GABA-enriched germinated and fermented mung bean aqueous extracts were compared. Liver superoxide dismutase (SOD), malondialdehyde (MDA), ferric reducing antioxidant power (FRAP), nitric oxide (NO) levels, and serum biochemical profile such as aspartate transaminase (AST), alanine transaminase (ALT), triglycerides (TG), and cholesterol and histopathological changes were examined for the antioxidant and hepatoprotective effects of these treatments. Germinated and fermented mung bean have recorded an increase of 27.9 and 7.3 times of GABA and 8.7 and 13.2 times of amino acid improvement, respectively, as compared to normal mung bean. Besides, improvement of antioxidant levels, serum markers, and NO level associated with better histopathological evaluation indicated that these extracts could promote effective recovery from hepatocyte damage. These results suggested that freeze-dried, germinated, and fermented mung bean aqueous extracts enriched with amino acids and GABA possessed better hepatoprotective effect as compared to normal mung bean.
  7. Ismail S, Jalilian FA, Talebpour AH, Zargar M, Shameli K, Sekawi Z, et al.
    Biomed Res Int, 2013;2013:696835.
    PMID: 23484141 DOI: 10.1155/2013/696835
    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88 mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent.
  8. Mohd Said A, Manaf H, Bukry SA, Justine M
    Biomed Res Int, 2015;2015:385269.
    PMID: 26583104 DOI: 10.1155/2015/385269
    This study determines (1) the correlation between mobility and balance performances with physiological factors and (2) the relationship between foot postures with anthropometric characteristics and lower limb characteristics among elderly with neutral, pronated, and supinated foot. A cross-sectional observational study was conducted in community-dwelling elderly (age: 69.86 ± 5.62 years). Participants were grouped into neutral (n = 16), pronated (n = 14), and supinated (n = 14) foot based on the foot posture index classification. Anthropometric data (height, weight, and BMI), lower limb strength (5-STS) and endurance (30 s chair rise test), mobility (TUG), and balance (FSST) were determined. Data were analyzed using Spearman's correlation coefficient. Body weight was negatively and moderately correlated (r(s) = -0.552, P < 0.05) with mobility in supinated foot; moderate-to-high positive linear rank correlation was found between lower limb strength and mobility (r(s) = 0.551 to 0.804, P < 0.05) for pronated and neutral foot. Lower limb endurance was negatively and linearly correlated with mobility in pronated (r(s) = -0.699) and neutral (r(s) = -0.573) foot. No correlation was observed in balance performance with physiological factors in any of the foot postures. We can conclude that muscle function may be the most important feature to make movement possible in older persons regardless of the type of foot postures.
  9. Malagobadan S, Nagoor NH
    Biomed Res Int, 2015;2015:716816.
    PMID: 26587543 DOI: 10.1155/2015/716816
    Dysregulation of microRNAs (miRNAs) has been implicated in almost every known survival mechanisms utilized by cancer cells. One of such mechanisms, anoikis resistance, plays a pivotal role in enabling metastasis by allowing cancer cells to circumvent cell death induced by lack of attachment. Understanding how miRNAs regulate the various anoikis pathways has become the research question of increasing number of studies published in the past years. Through these studies, a growing list of miRNAs has been identified to be important players in promoting either anoikis or resistance to anoikis. In this review, we will be focusing on these miRNAs and how the findings from those studies can contribute to novel therapeutic strategies against cancer progression. We will be examining miRNAs that have been found to promote anoikis sensitivity in numerous cancer types followed by miRNAs that inhibit anoikis. In addition, we will also be taking a look at major signaling pathways involved in the action of the each of these miRNAs to gain a better understanding on how miRNAs regulate anoikis.
  10. Loewe A, Schulze WH, Jiang Y, Wilhelms M, Luik A, Dössel O, et al.
    Biomed Res Int, 2015;2015:530352.
    PMID: 26587538 DOI: 10.1155/2015/530352
    In case of chest pain, immediate diagnosis of myocardial ischemia is required to respond with an appropriate treatment. The diagnostic capability of the electrocardiogram (ECG), however, is strongly limited for ischemic events that do not lead to ST elevation. This computational study investigates the potential of different electrode setups in detecting early ischemia at 10 minutes after onset: standard 3-channel and 12-lead ECG as well as body surface potential maps (BSPMs). Further, it was assessed if an additional ECG electrode with optimized position or the right-sided Wilson leads can improve sensitivity of the standard 12-lead ECG. To this end, a simulation study was performed for 765 different locations and sizes of ischemia in the left ventricle. Improvements by adding a single, subject specifically optimized electrode were similar to those of the BSPM: 2-11% increased detection rate depending on the desired specificity. Adding right-sided Wilson leads had negligible effect. Absence of ST deviation could not be related to specific locations of the ischemic region or its transmurality. As alternative to the ST time integral as a feature of ST deviation, the K point deviation was introduced: the baseline deviation at the minimum of the ST-segment envelope signal, which increased 12-lead detection rate by 7% for a reasonable threshold.
  11. Foo KY, Chee HY
    Biomed Res Int, 2015;2015:427814.
    PMID: 26347881 DOI: 10.1155/2015/427814
    Flaviviruses are potentially human pathogens that cause major epidemics worldwide. Flavivirus interacts with host cell factors to form a favourable virus replication site. Cell cytoskeletons have been observed to have close contact with flaviviruses, which expands the understanding of cytoskeleton functions during virus replication, although many detailed mechanisms are still unclear. The interactions between the virus and host cytoskeletons such as actin filaments, microtubules, and intermediate filaments have provided insight into molecular alterations during the virus infection, such as viral entry, in-cell transport, scaffold assembly, and egress. This review article focuses on the utilization of cytoskeleton by Flavivirus and the respective functions during virus replication.
  12. Abdullah AA, Altaf-Ul-Amin M, Ono N, Sato T, Sugiura T, Morita AH, et al.
    Biomed Res Int, 2015;2015:139254.
    PMID: 26495281 DOI: 10.1155/2015/139254
    Volatile organic compounds (VOCs) are small molecules that exhibit high vapor pressure under ambient conditions and have low boiling points. Although VOCs contribute only a small proportion of the total metabolites produced by living organisms, they play an important role in chemical ecology specifically in the biological interactions between organisms and ecosystems. VOCs are also important in the health care field as they are presently used as a biomarker to detect various human diseases. Information on VOCs is scattered in the literature until now; however, there is still no available database describing VOCs and their biological activities. To attain this purpose, we have developed KNApSAcK Metabolite Ecology Database, which contains the information on the relationships between VOCs and their emitting organisms. The KNApSAcK Metabolite Ecology is also linked with the KNApSAcK Core and KNApSAcK Metabolite Activity Database to provide further information on the metabolites and their biological activities. The VOC database can be accessed online.
  13. Krishnan V, Ahmad S, Mahmood M
    Biomed Res Int, 2015;2015:147909.
    PMID: 26491654 DOI: 10.1155/2015/147909
    Plants from Gynura family was used in this study, namely, Gynura procumbens and Gynura bicolor. Gynura procumbens is well known for its various medicinal properties such as antihyperglycaemic, antihyperlipidaemic, and antiulcerogenic; meanwhile, G. bicolor remains unexploited. Several nonenzymatic antioxidants methods were utilized to study the antioxidant capacity, which include ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, total flavonoid content, total phenolic content, and ascorbic acid content determination. DPPH assay reveals G. procumbens shoot as the lowest (66.885%) and G. procumbens root as the highest (93.499%) DPPH radical inhibitor. In FRAP assay, reducing power was not detected in G. procumbens leaf callus (0.000 TEAC mg/g FW) whereby G. procumbens root exhibits the highest (1.103 TEAC mg/g FW) ferric reducing power. Total phenolic content and total flavonoid content exhibited similar trend for both the intact plants analysed. In all antioxidant assays, G. procumbens callus culture exhibits very low antioxidant activity. However, G. procumbens root exhibited highest phenolic content, flavonoid content, and ascorbic acid content with 4.957 TEAC mg/g FW, 543.529 QE µg/g FW, and 54.723 µg/g FW, respectively. This study reveals that G. procumbens root extract is a good source of natural antioxidant.
  14. Yap NY, Rajandram R, Ng KL, Pailoor J, Fadzli A, Gobe GC
    Biomed Res Int, 2015;2015:476508.
    PMID: 26448938 DOI: 10.1155/2015/476508
    The most common form of malignant renal neoplasms is renal cell carcinoma (RCC), which is classified into several different subtypes based on the histomorphological features. However, overlaps in these characteristics may present difficulties in the accurate diagnosis of these subtypes, which have different clinical outcomes. Genomic and molecular studies have revealed unique genetic aberrations in each subtype. Knowledge of these genetic changes in hereditary and sporadic renal neoplasms has given an insight into the various proteins and signalling pathways involved in tumour formation and progression. In this review, the genetic aberrations characteristic to each renal neoplasm subtype are evaluated along with the associated protein products and affected pathways. The potential applications of these genetic aberrations and proteins as diagnostic tools, prognostic markers, or therapeutic targets are also assessed.
  15. Rahman MS, Sathasivam KV
    Biomed Res Int, 2015;2015:126298.
    PMID: 26295032 DOI: 10.1155/2015/126298
    Biosorption process is a promising technology for the removal of heavy metals from industrial wastes and effluents using low-cost and effective biosorbents. In the present study, adsorption of Pb(2+), Cu(2+), Fe(2+), and Zn(2+) onto dried biomass of red seaweed Kappaphycus sp. was investigated as a function of pH, contact time, initial metal ion concentration, and temperature. The experimental data were evaluated by four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) and four kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models). The adsorption process was feasible, spontaneous, and endothermic in nature. Functional groups in the biomass involved in metal adsorption process were revealed as carboxylic and sulfonic acids and sulfonate by Fourier transform infrared analysis. A total of nine error functions were applied to validate the models. We strongly suggest the analysis of error functions for validating adsorption isotherm and kinetic models using linear methods. The present work shows that the red seaweed Kappaphycus sp. can be used as a potentially low-cost biosorbent for the removal of heavy metal ions from aqueous solutions. Further study is warranted to evaluate its feasibility for the removal of heavy metals from the real environment.
  16. Irawan BA, Irawan SN, Masudi SM, Sukminingrum N, Alam MK
    Biomed Res Int, 2015;2015:327289.
    PMID: 26558267 DOI: 10.1155/2015/327289
    This study aims to evaluate the effects of vital tooth bleaching with carbamide peroxide home bleaching and in-office bleaching on the color stability and 3D surface profile of dental restorative filling materials. Thirty discs (n = 30) measure 6 mm in diameter and 2 mm thick for each of three restorative materials. These are nanofilled composite Filtek Z350 XT, the submicron composite Estelite Σ Quick, and nanofilled glass ionomer Ketac N100 nanoionomer and were fabricated in shade A2. Each group was further divided into three subgroups (n = 10): subgroup A (Opalescence PF), subgroup B (Opalescence Boost in-office bleaching), and subgroup C (distilled water) serving as control. Samples were bleached according to the manufacturer's instructions for a period of two weeks. The Commission Internationale de L'Eclairage (CIE L(*), a(*), b(*)) system was chosen for image processing, while 3D surface profile was tested with atomic force microscopy (AFM). Statistical analyses were performed with the Mann-Whitney tests and Krusal-Wallis with a P value of ≤ 0.05. The three restorative materials showed significant color changes (ΔE); P ≤ 0.05. In diminishing order, the mean color changes recorded were Estelite Σ (3.82 ± 1.6) > Ketac Nano (2.97 ± 1.2) > Filtek Z350 XT (2.25 ± 1.0). However, none of the tested materials showed statistically significant changes in surface roughness; P > 0.05.
  17. Abu Bakar MF, Ahmad NE, Suleiman M, Rahmat A, Isha A
    Biomed Res Int, 2015;2015:916902.
    PMID: 26557713 DOI: 10.1155/2015/916902
    Garcinia dulcis or locally known in Malaysia as "mundu" belongs to the family of Clusiaceae. The study was conducted to investigate the anticancer potential of different parts of G. dulcis fruit extracts and their possible mechanism of action in HepG2 liver cancer cell line. MTT assay showed that the peel, flesh, and seed extracts of G. dulcis induced cytotoxicity in HepG2 cell line with IC50 values of 46.33 ± 4.51, 38.33 ± 3.51, and 7.5 ± 2.52 µg/mL, respectively. The flesh extract of G. dulcis induced cell cycle arrest at sub-G1 (apoptosis) phase in a time-dependent manner. Staining with Annexin V-FITC and propidium iodide showed that 41.2% of the cell population underwent apoptosis after 72 hours of exposure of the HepG2 cell line to G. dulcis flesh extract. Caspase-3 has been shown to be activated which finally leads to the death of HepG2 cell (apoptosis). GC-MS analysis showed that the highest percentage of compound identified in the extract of G. dulcis flesh was hydroxymethylfurfural and 3-methyl-2,5-furandione, together with xanthones and flavonoids (based on literature), could synergistically contribute to the observed effects. This finding suggested that the flesh extract of G. dulcis has its own potential as cancer chemotherapeutic agent against liver cancer cell.
  18. Ahmadi A, Zorofchian Moghadamtousi S, Abubakar S, Zandi K
    Biomed Res Int, 2015;2015:825203.
    PMID: 26484353 DOI: 10.1155/2015/825203
    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links