Displaying publications 161 - 180 of 330 in total

Abstract:
Sort:
  1. Hasmad H, Yusof MR, Mohd Razi ZR, Hj Idrus RB, Chowdhury SR
    Tissue Eng Part C Methods, 2018 06;24(6):368-378.
    PMID: 29690856 DOI: 10.1089/ten.TEC.2017.0447
    Fabrication of composite scaffolds is one of the strategies proposed to enhance the functionality of tissue-engineered scaffolds for improved tissue regeneration. By combining multiple elements together, unique biomimetic scaffolds with desirable physical and mechanical properties can be tailored for tissue-specific applications. Despite having a highly porous structure, the utility of electrospun fibers (EF) as scaffold is usually hampered by their insufficient mechanical strength. In this study, we attempted to produce a mechanically competent scaffold with cell-guiding ability by fabricating aligned poly lactic-co-glycolic acid (PLGA) fibers on decellularized human amniotic membrane (HAM), known to possess favorable tensile and wound healing properties. Decellularization of HAM in 18.75 μg/mL of thermolysin followed by a brief treatment in 0.25 M sodium hydroxide efficiently removed the amniotic epithelium and preserved the ultrastructure of the underlying extracellular matrix. The electrospinning of 20% (w/v) PLGA 50:50 polymer on HAM yielded beadless fibers with straight morphology. Subsequent physical characterization revealed that EF-HAM scaffold with a 3-min fabrication had the most aligned fibers with the lowest fiber diameter in comparison with EF-HAM 5- and 7-min scaffolds. Hydrated EF-HAM scaffolds with 3-min deposition had a greater tensile strength than the other scaffolds despite having thinner fibers. Nevertheless, wet HAM and EF-HAMs regardless of the fiber thicknesses had a significantly lower Young's modulus, and hence, a higher elasticity compared with dry HAM and EF-HAMs. Biocompatibility analysis showed that the viability and migration rate of skeletal muscle cells on EF-HAMs were similar to control and HAM alone. Skeletal muscle cells seeded on HAM were shown to display random orientation, whereas cells on EF-HAM scaffolds were oriented along the alignment of the electrospun PLGA fibers. In summary, besides having good mechanical strength and elasticity, EF-HAM scaffold design decorated with aligned fiber topography holds a promising potential for use in the development of aligned tissue constructs.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  2. Wahid MNA, Abd Razak SI, Abdul Kadir MR, Hassan R, Nayan NHM, Mat Amin KA
    J Biomater Appl, 2018 07;33(1):94-102.
    PMID: 29716417 DOI: 10.1177/0885328218771195
    This work reports the modification of freeze/thaw poly(vinyl alcohol) hydrogel using citric acid as the bioactive molecule for hydroxyapatite formation in simulated body fluid. Inclusion of 1.3 mM citric acid into the poly(vinyl alcohol) hydrogel showed that the mechanical strength, crystalline phase, functional groups and swelling ability were still intact. Adding citric acid at higher concentrations (1.8 and 2.3 mM), however, resulted in physically poor hydrogels. Presence of 1.3 mM of citric acid showed the growth of porous hydroxyapatite crystals on the poly(vinyl alcohol) surface just after one day of immersion in simulated body fluid. Meanwhile, a fully covered apatite layer on the poly(vinyl alcohol) surface plus the evidence of apatite forming within the hydrogel were observed after soaking for seven days. Gel strength of the soaked poly(vinyl alcohol)/citric acid-1.3 mM hydrogel revealed that the load resistance was enhanced compared to that of the neat poly(vinyl alcohol) hydrogel. This facile method of inducing rapid growth of hydroxyapatite on the hydrogel surface as well as within the hydrogel network can be useful for guided bone regenerative materials.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  3. Thomas B, Gupta K
    J Esthet Restor Dent, 2017 Nov 12;29(6):435-441.
    PMID: 28703476 DOI: 10.1111/jerd.12317
    OBJECTIVE: Nano-hydroxyapatite-added GIC has been developed to improve the physical properties of conventional GIC. However, biological response of periodontal cells to this potentially useful cervical restorative material has been unexplored. The aim of this study was to investigate the in vitro response of human periodontal ligament fibroblasts to hydroxyapatite-added GIC.

    MATERIALS AND METHODS: Three categories of materials, namely, test group 1 (cGIC or type IX GIC), test group 2 (HA-GIC or hydroxyapatite-added GIC), and positive control (glass cover slips) were incubated with human periodontal ligament fibroblasts. The samples were viewed under scanning electron microscope to study the morphological characteristics of fibroblasts. Additionally, elemental analysis was performed to differentiate between the two test groups based on surface chemical composition.

    RESULTS: Test group 1 (cGIC) exhibited cells with curled up morphology, indicative of poor attachment to the substrate. Test group 2 (Ha-GIC) exhibited cells with flattened morphology and numerous cellular extensions such as lamellipodia and blebs, indicative of good attachment to the substrate. The test group 2 (Ha-GIC) demonstrated higher surface elemental percentages of calcium and phosphorus.

    CONCLUSION: Within the limitations of this study, it may be concluded that hydroxyapatite-added GIC is more biocompatible than conventional GIC (type IX), probably attributed to high elemental percentages of calcium and phosphorus.

    CLINICAL SIGNIFICANCE: The search for an ideal cervical restorative dental material has been ever elusive. Hydroxyapatite-added GIC is a simple and economical dental material to fabricate from basic conventional GIC. The results from this study strengthen its candidature for cervical and root surface restorations which may later require soft tissue augmentation. The possibility of connective tissue adhesion to this material is an exciting prospect in the field of periorestorative dentistry.

    Matched MeSH terms: Biocompatible Materials/pharmacology
  4. Gorain B, Tekade M, Kesharwani P, Iyer AK, Kalia K, Tekade RK
    Drug Discov Today, 2017 04;22(4):652-664.
    PMID: 28219742 DOI: 10.1016/j.drudis.2016.12.007
    To avoid tissue rejection during organ transplantation, research has focused on the use of tissue engineering to regenerate required tissues or organs for patients. The biomedical applications of hyperbranched, multivalent, structurally uniform, biocompatible dendrimers in tissue engineering include the mimicking of natural extracellular matrices (ECMs) in the 3D microenvironment. Dendrimers are unimolecular architects that can incorporate a variety of biological and/or chemical substances in a 3D architecture to actively support the scaffold microenvironment during cell growth. Here, we review the use of dendritic delivery systems in tissue engineering. We discuss the available literature, highlighting the 3D architecture and preparation of these nanoscaffolds, and also review challenges to, and advances in, the use dendrimers in tissue engineering. Advances in the manufacturing of dendritic nanoparticles and scaffold architectures have resulted in the successful incorporation of dendritic scaffolds in tissue engineering.
    Matched MeSH terms: Biocompatible Materials/administration & dosage
  5. Alias R, Mahmoodian R, Genasan K, Vellasamy KM, Hamdi Abd Shukor M, Kamarul T
    Mater Sci Eng C Mater Biol Appl, 2020 Feb;107:110304.
    PMID: 31761210 DOI: 10.1016/j.msec.2019.110304
    Surgical site infection associated with surgical instruments has always been a factor in delaying post-operative recovery of patients. The evolution in surface modification of surgical instruments can be a potential choice to overcome the nosocomial infection mainly caused by bacterial populations such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. A study was, therefore, conducted characterising the morphology, hydrophobicity, adhesion strength, phase, Nano-hardness, surface chemistry, antimicrobial and biocompatibility of SS 316L steel deposited with a Nano-composite layer of Silver (Ag) and Tantalum oxide (Ta2O5) using physical vapour deposition magnetron sputtering. The adhesion strength of Ag/AgTa2O5 coating on SS 316L and treated at 250-850 °C of thermal treatment was evaluated using micro-scratch. The Ag/Ag-Ta2O5-400 °C was shown a 154% improvement in adhesion strength on SS 316L when compared with as-sputtered layer or Ag/Ag-Ta2O5-250, 550, 700 and 850 °C. The FESEM, XPS, and XRD indicated the segregation of Ag on the surface of SS 316L after the crystallization. Wettability and Nano-indentation tests demonstrated an increase in hydrophobicity (77.3 ± 0.3°) and Nano-hardness (1.12 ± 0.43 GPa) when compared with as-sputtered layer, after the 400 °C of thermal treatment. The antibacterial performance on Ag/Ag-Ta2O5-400 °C indicated a significant zone of inhibition to Staphylococcus aureus (A-axis: 16.33 ± 0.58 mm; B-axis: 25.67 ± 0.58 mm, p 
    Matched MeSH terms: Biocompatible Materials/chemistry*
  6. Tan HL, Kai D, Pasbakhsh P, Teow SY, Lim YY, Pushpamalar J
    Colloids Surf B Biointerfaces, 2020 Apr;188:110713.
    PMID: 31884080 DOI: 10.1016/j.colsurfb.2019.110713
    Electrospinning is a common method to prepare nanofiber scaffolds for tissue engineering. One of the common cellulose esters, cellulose acetate butyrate (CAB), has been electrospun into nanofibers and studied. However, the intrinsic hydrophobicity of CAB limits its application in tissue engineering as it retards cell adhesion. In this study, the properties of CAB nanofibers were improved by fabricating the composite nanofibers made of CAB and hydrophilic polyethylene glycol (PEG). Different ratios of CAB to PEG were tested and only the ratio of 2:1 resulted in smooth and bead-free nanofibers. The tensile test results show that CAB/PEG composite nanofibers have 2-fold higher tensile strength than pure CAB nanofibers. The hydrophobicity of the composite nanofibers was also reduced based on the water contact angle analysis. As the hydrophilicity increases, the swelling ability of the composite nanofiber increases by 2-fold with more rapid biodegradation. The biocompatibility of the nanofibers was tested with normal human dermal fibroblasts (NHDF). The cell viability assay results revealed that the nanofibers are non-toxic. In addition to that, CAB/PEG nanofibers have better cell attachment compared to pure CAB nanofibers. Based on this study, CAB/PEG composite nanofibers could potentially be used as a nanofiber scaffold for applications in tissue engineering.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  7. Ghosal K, Das A, Das SK, Mahmood S, Ramadan MAM, Thomas S
    Int J Biol Macromol, 2019 Jun 01;130:645-654.
    PMID: 30797807 DOI: 10.1016/j.ijbiomac.2019.02.117
    This study aimed to develop and characterize the calcium alginate films loaded with diclofenac sodium and other hydrophilic polymers with different degrees of cross-linking obtained by external gelation process. To the formed films different physicochemical evaluation were performed which showed an initial character of the films. The films produced by this external gelation process were found thicker (0.031-0.038 mm) and stronger (51.9-52.9 MPa) but less elastic (2.3%) than those non-cross-linked films (0.029 mm; 39.7 MPa; 4.4%). The lower water vapor permeability (WVP) values of the films were obtained where maximum level of crosslinking occurs. Composite films can be cross-linked in presence of external crosslinking agent to improve the quality of the produced matrices for various uses. The characterization of the film was performed using Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared Spectroscopy (FT-IR) analysis. The Scanning Electron Microscopy (SEM) study showed the morphology of treated composite films. The kinetic release studies showed a sustained release of the drug from the formulated films as it can be prolonged in composite film. The prepared biodegradable Ca-Alginate bio-composite film may be of clinical importance for its therapeutic benefit.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  8. Chahal S, Kumar A, Hussian FSJ
    J Biomater Sci Polym Ed, 2019 10;30(14):1308-1355.
    PMID: 31181982 DOI: 10.1080/09205063.2019.1630699
    Electrospinning is a promising and versatile technique that is used to fabricate polymeric nanofibrous scaffolds for bone tissue engineering. Ideal scaffolds should be biocompatible and bioactive with appropriate surface chemistry, good mechanical properties and should mimic the natural extracellular matrix (ECM) of bone. Selection of the most appropriate material to produce a scaffold is an important step towards the construction of a tissue engineered product. Bone tissue engineering is an interdisciplinary field, where the principles of engineering are applied on bone-related biochemical reactions. Scaffolds, cells, growth factors, and their interrelation in microenvironment are the major concerns in bone tissue engineering. This review covers the latest development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. It includes the brief details to bone tissue engineering along with bone structure and ideal bone scaffolds requirements. Details about various engineered materials and methodologies used for bone scaffolds development were discussed. Description of electrospinning technique and its parameters relating their fabrication, advantages, and applications in bone tissue engineering were also presented. The use of synthetic and natural polymers based electrospun nanofibrous scaffolds for bone tissue engineering and their biomineralization processes were discussed and reviewed comprehensively. Finally, we give conclusion along with perspectives and challenges of biomimetic scaffolds for bone tissue engineering based on electrospun nanofibers.
    Matched MeSH terms: Biocompatible Materials/pharmacology*
  9. Jaganathan SK, Mani MP
    An Acad Bras Cienc, 2020;92(1):e20180369.
    PMID: 32236296 DOI: 10.1590/0001-3765202020180369
    Ayurveda oil contains numerous source of biological constituents which plays an important role in reducing the pain relief caused during bone fracture. The aim of the study is to fabricate the polyurethane (PU) scaffold for bone tissue engineering added with ayurveda amla oil using electrospinning technique. Scanning Electron Microscopy (SEM) analysis showed that the fabricated nanocomposites showed reduced fiber diameter (758 ± 185.46 nm) than the pristine PU (890 ± 116.91 nm). Fourier Infrared Analysis (FTIR) revealed the existence of amla oil in the PU matrix by hydrogen bond formation. The contact angle results revealed the decreased wettability (116° ± 1.528) of the prepared nanocomposites compared to the pure PU (100° ± 0.5774). The incorporation of amla oil into the PU matrix improved the surface roughness. Further, the coagulation assay indicated that the addition of amla oil into PU delayed the blood clotting times and exhibited less toxic to red blood cells. Hence, the fabricated nanocomposites showed enhanced physicochemical and better blood compatibility parameters which may serve as a potential candidate for bone tissue engineering.
    Matched MeSH terms: Biocompatible Materials/analysis*
  10. Ching KY, Andriotis O, Sengers B, Stolz M
    J Biomater Appl, 2021 09;36(3):503-516.
    PMID: 33730922 DOI: 10.1177/08853282211002015
    Towards optimizing the growth of extracellular matrix to produce repair cartilage for healing articular cartilage (AC) defects in joints, scaffold-based tissue engineering approaches have recently become a focus of clinical research. Scaffold-based approaches by electrospinning aim to support the differentiation of chondrocytes by providing an ultrastructure similar to the fibrillar meshwork in native cartilage. In a first step, we demonstrate how the blending of chitosan with poly(ethylene oxide) (PEO) allows concentrated chitosan solution to become electrospinnable. The chitosan-based scaffolds share the chemical structure and characteristics of glycosaminoglycans, which are important structural components of the cartilage extracellular matrix. Electrospinning produced nanofibrils of ∼100 nm thickness that are closely mimicking the size of collagen fibrils in human AC. The polymer scaffolds were stabilized in physiological conditions and their stiffness was tuned by introducing the biocompatible natural crosslinker genipin. We produced scaffolds that were crosslinked with 1.0% genipin to obtain values of stiffness that were in between the stiffness of the superficial zone human AC of 600 ± 150 kPa and deep zone AC of 1854 ± 483 kPa, whereas the stiffness of 1.5% genipin crosslinked scaffold was similar to the stiffness of deep zone AC. The scaffolds were degradable, which was indicated by changes in the fibril structure and a decrease in the scaffold stiffness after seven months. Histological and immunohistochemical analysis after three weeks of culture with human articular chondrocytes (HACs) showed a cell viability of over 90% on the scaffolds and new extracellular matrix deposited on the scaffolds.
    Matched MeSH terms: Biocompatible Materials/chemistry
  11. Wong TW, Nurulaini H
    Drug Dev Ind Pharm, 2012 Dec;38(12):1417-27.
    PMID: 22309449 DOI: 10.3109/03639045.2011.653364
    Alginate-chitosan pellets prepared by extrusion-spheronization technique exhibited fast drug dissolution.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  12. Nour S, Imani R, Chaudhry GR, Sharifi AM
    J Biomed Mater Res A, 2021 04;109(4):453-478.
    PMID: 32985051 DOI: 10.1002/jbm.a.37105
    Skin injuries and in particular, chronic wounds, are one of the major prevalent medical problems, worldwide. Due to the pivotal role of angiogenesis in tissue regeneration, impaired angiogenesis can cause several complications during the wound healing process and skin regeneration. Therefore, induction or promotion of angiogenesis can be considered as a promising approach to accelerate wound healing. This article presents a comprehensive overview of current and emerging angiogenesis induction methods applied in several studies for skin regeneration, which are classified into the cell, growth factor, scaffold, and biological/chemical compound-based strategies. In addition, the advantages and disadvantages of these angiogenic strategies along with related research examples are discussed in order to demonstrate their potential in the treatment of wounds.
    Matched MeSH terms: Biocompatible Materials/therapeutic use
  13. Sharifzadeh G, Hosseinkhani H
    Adv Healthc Mater, 2017 Dec;6(24).
    PMID: 29057617 DOI: 10.1002/adhm.201700801
    Recent advances and applications of biomolecule-responsive hydrogels, namely, glucose-responsive hydrogels, protein-responsive hydrogels, and nucleic-acid-responsive hydrogels are highlighted. However, achieving the ultimate purpose of using biomolecule-responsive hydrogels in preclinical and clinical areas is still at the very early stage and calls for more novel designing concepts and advance ideas. On the way toward the real/clinical application of biomolecule-responsive hydrogels, plenty of factors should be extensively studied and examined under both in vitro and in vivo conditions. For example, biocompatibility, biointegration, and toxicity of biomolecule-responsive hydrogels should be carefully evaluated. From the living body's point of view, biocompatibility is seriously depended on the interactions at the tissue/polymer interface. These interactions are influenced by physical nature, chemical structure, surface properties, and degradation of the materials. In addition, the developments of advanced hydrogels with tunable biological and mechanical properties which cause no/low side effects are of great importance.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  14. Hiew VV, Simat SFB, Teoh PL
    Stem Cell Rev Rep, 2018 Feb;14(1):43-57.
    PMID: 28884292 DOI: 10.1007/s12015-017-9764-y
    Stem cells are well-known to have prominent roles in tissue engineering applications. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can differentiate into every cell type in the body while adult stem cells such as mesenchymal stem cells (MSCs) can be isolated from various sources. Nevertheless, an utmost limitation in harnessing stem cells for tissue engineering is the supply of cells. The advances in biomaterial technology allows the establishment of ex vivo expansion systems to overcome this bottleneck. The progress of various scaffold fabrication could direct stem cell fate decisions including cell proliferation and differentiation into specific lineages in vitro. Stem cell biology and biomaterial technology promote synergistic effect on stem cell-based regenerative therapies. Therefore, understanding the interaction of stem cell and biomaterials would allow the designation of new biomaterials for future clinical therapeutic applications for tissue regeneration. This review focuses mainly on the advances of natural and synthetic biomaterials in regulating stem cell fate decisions. We have also briefly discussed how biological and biophysical properties of biomaterials including wettability, chemical functionality, biodegradability and stiffness play their roles.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  15. Paulraj P, Vnootheni N, Chandramohan M, Thevarkattil MJP
    Recent Pat Biotechnol, 2018;12(3):186-199.
    PMID: 29384069 DOI: 10.2174/1872208312666180131114125
    BACKGROUND: Polyhydroxyalkanoates are bio-based, biodegradable naturally occurring polymers produced by a wide range of organisms, from bacteria to higher mammals. The properties and biocompatibility of PHA make it possible for a wide spectrum of applications. In this context, we analyze the potential applications of PHA in biomedical science by exploring the global trend through the patent survey. The survey suggests that PHA is an attractive candidate in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packaging material as well as other useful products.

    OBJECTIVE: In our present study, we explored patents associated with various biomedical applications of polyhydroxyalkanoates.

    METHOD: Patent databases of European Patent Office, United States Patent and Trademark Office and World Intellectual Property Organization were mined. We developed an intensive exploration approach to eliminate overlapping patents and sort out significant patents.We demarcated the keywords and search criterions and established search patterns for the database request. We retrieved documents within the recent 6 years, 2010 to 2016 and sort out the collected data stepwise to gather the most appropriate documents in patent families for further scrutiny.

    RESULTS: By this approach, we retrieved 23,368 patent documents from all the three databases and the patent titles were further analyzed for the relevance of polyhydroxyalkanoates in biomedical applications. This ensued in the documentation of approximately 226 significant patents associated with biomedical applications of polyhydroxyalkanoates and the information was classified into six major groups. Polyhydroxyalkanoates has been patented in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packagingmaterial as well as other useful products.

    CONCLUSION: There are many avenues through which PHA & PHB could be used. Our analysis shows patent information can be used to identify various applications of PHA and its representatives in the biomedical field. Upcoming studies can focus on the application of PHA in the different field to discover the related topics and associate to this study.We believe that this approach of analysis and findings can initiate new researchers to undertake similar kind of studies in their represented field to fill the gap between the patent articles and research publications.

    Matched MeSH terms: Biocompatible Materials/standards
  16. Ullah F, Javed F, Othman MBH, Khan A, Gul R, Ahmad Z, et al.
    J Biomater Sci Polym Ed, 2018 03;29(4):376-396.
    PMID: 29285989 DOI: 10.1080/09205063.2017.1421347
    Addressing the functional biomaterials as next-generation therapeutics, chitosan and alginic acid were copolymerized in the form of chemically crosslinked interpenetrating networks (IPNs). The native hydrogel was functionalized via carbodiimide (EDC), catalyzed coupling of soft ligand (1,2-Ethylenediamine) and hard ligand (4-aminophenol) to replace -OH groups in alginic acid units for extended hydrogel- interfaces with the aqueous and sparingly soluble drug solutions. The chemical structure, Lower solution critical temperature (LCST ≈ 37.88 °C), particle size (Zh,app ≈ 150-200 nm), grain size (160-360 nm), surface roughness (85-250 nm), conductivity (37-74 mv) and zeta potential (16-32 mv) of native and functionalized hydrogel were investigated by using FT-IR, solid state-13C-NMR, TGA, DSC, FESEM, AFM and dynamic light scattering (DLS) measurements. The effective swelling, drug loading (47-78%) and drug release (53-86%) profiles were adjusted based on selective functionalization of hydrophobic IPNs due to electrostatic complexation and extended interactions of hydrophilic ligands with the aqueous and drug solutions. Drug release from the hydrogel matrices with diffusion coefficient n ≈ 0.7 was established by Non- Fickian diffusion mechanism. In vitro degradation trials of the hydrogel with a 20% loss of wet mass in simulated gastric fluid (SGF) and 38% loss of wet mass in simulated intestinal fluid (SIF), were investigated for 400 h through bulk erosion. Consequently, a slower rate of drug loading and release was observed for native hydrogel, due to stronger H-bonding, interlocking and entanglement within the IPNs, which was finely tuned and extended by the induced hydrophilic and functional ligands. In the light of induced hydrophilicity, such functional hydrogel could be highly attractive for extended release of sparingly soluble drugs.
    Matched MeSH terms: Biocompatible Materials/chemistry
  17. Gul I, Yunus U, Ajmal M, Bhatti MH, Chaudhry GE
    Biomed Mater, 2021 Aug 31;16(5).
    PMID: 34375958 DOI: 10.1088/1748-605X/ac1c61
    Cancer is the leading cause of death worldwide. Capecitabine (CP) shows severe side effects because of early metabolism in stomach that affects the normal cells and organs, particularly liver and stomach. In this scope, we report the biocompatible, nontoxic polymeric thin films loaded with anti-cancer drug, CP for target specific, sublingual delivery of CP. Chitosan (CS) and polyvinyl alcohol (PVA) were used as biodegradable polymers alongwith glutaraldehyde (GLA) cross linker. CP-loaded thin films (TFCP1-TFCP5) were fabricated by solvent casting method. The results of Fourier transform infrared spectroscopy confirmed the presence of CP and polymers (CS and PVA) with GLA which binds through hydrogen bonding, and compatibility of drug with different excipients. Thermogravemetric analysis showed that the thin films are highly stable while differential scanning calorimeter thermograms confirmed the complete miscibility/entrapment of CP within PVA/CS thin film matrix. X-ray diffraction patterns revealed the molecular ineractions between CP and polymer matrix. High degree of swelling index of thin films at pH 7.4 was observed in comparison to pH 5.5. CP release studies in acetate (pH 5.5) and phosphate buffer (pH 7.4) showed that the thin films swell and result in drug diffusion faster in phosphate buffer through diffusion governed by Higuchi's model. Cytotoxicity results displayed that CPTFs killed MCF-7 and T47D (human breast adenocarcinoma) cells more effectively as compared to CP alone. The results of adhesion assay also showed that the PVA and CS both are safe and biocompatible. TFCP1 and TFCP3 thin films efficiently induced the apoptosis as compared to CP alone. The improved ability of TFCP1 and TFCP3 to induce cytotoxicity in MCF-7 cells reflects the potential of these thin films for targeted drug delivery. The CPTFs were stable for 4 months at 4 °C/60% ± 2%RH and 25 °C/70% ± 2%RH. In conclusion, the thin film formulations showed target specific controlled and burst release properties and thus could prove to be effective for human breast cancer treatment.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  18. Aslam Khan MU, Abd Razak SI, Al Arjan WS, Nazir S, Sahaya Anand TJ, Mehboob H, et al.
    Molecules, 2021 Jan 25;26(3).
    PMID: 33504080 DOI: 10.3390/molecules26030619
    The polymeric composite material with desirable features can be gained by selecting suitable biopolymers with selected additives to get polymer-filler interaction. Several parameters can be modified according to the design requirements, such as chemical structure, degradation kinetics, and biopolymer composites' mechanical properties. The interfacial interactions between the biopolymer and the nanofiller have substantial control over biopolymer composites' mechanical characteristics. This review focuses on different applications of biopolymeric composites in controlled drug release, tissue engineering, and wound healing with considerable properties. The biopolymeric composite materials are required with advanced and multifunctional properties in the biomedical field and regenerative medicines with a complete analysis of routine biomaterials with enhanced biomedical engineering characteristics. Several studies in the literature on tissue engineering, drug delivery, and wound dressing have been mentioned. These results need to be reviewed for possible development and analysis, which makes an essential study.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  19. Arshad R, Sohail MF, Sarwar HS, Saeed H, Ali I, Akhtar S, et al.
    PLoS One, 2019;14(6):e0217079.
    PMID: 31170179 DOI: 10.1371/journal.pone.0217079
    Post-operative surgical site infections (SSI) present a serious threat and may lead to complications. Currently available dressings for SSI lack mucoadhesion, safety, efficacy and most importantly patient compliance. We aimed to address these concerns by developing a bioactive thiolated chitosan-alginate bandage embedded with zinc oxide nanoparticles (ZnO-NPs) for localized topical treatment of SSI. The FTIR, XRD, DSC and TGA of bandage confirmed the compatibility of ingredients and modifications made. The porosity, swelling index and lysozyme degradation showed good properties for wound healing and biodegradation. Moreover, in-vitro antibacterial activity showed higher bactericidal effect as compared to ZnO-NPs free bandage. In-vivo wound healing in murine model showed significant improved tissue generation and speedy wound healing as compared to positive and negative controls. Over all, thiolated bandage showed potential as an advanced therapeutic agent for treating surgical site infections, meeting the required features of an ideal surgical dressing.
    Matched MeSH terms: Biocompatible Materials/metabolism; Biocompatible Materials/pharmacology*; Biocompatible Materials/therapeutic use; Biocompatible Materials/chemistry*
  20. Zare-Zardini H, Amiri A, Shanbedi M, Taheri-Kafrani A, Kazi SN, Chew BT, et al.
    J Biomed Mater Res A, 2015 Sep;103(9):2959-65.
    PMID: 25690431 DOI: 10.1002/jbm.a.35425
    One of the novel applications of the nanostructures is the modification and development of membranes for hemocompatibility of hemodialysis. The toxicity and hemocompatibility of Ag nanoparticles and arginine-treated multiwalled carbon nanotubes (MWNT-Arg) and possibility of their application in membrane technology are investigated here. MWNT-Arg is prepared by amidation reactions, followed by characterization by FTIR spectroscopy, Raman spectroscopy, and thermogravimetric analysis. The results showed a good hemocompatibility and the hemolytic rates in the presence of both MWNT-Arg and Ag nanoparticles. The hemolytic rate of Ag nanoparticles was lower than that of MWNT-Arg. In vivo study revealed that Ag nanoparticle and MWNT-Arg decreased Hematocrit and mean number of red blood cells (RBC) statistically at concentration of 100 µg mL(-1) . The mean decrease of RBC and Hematocrit for Ag nanoparticles (18% for Hematocrit and 5.8 × 1,000,000/µL) was more than MWNT-Arg (20% for Hematocrit and 6 × 1000000/µL). In addition, MWNT-Arg and Ag nanoparticles had a direct influence on the White Blood Cell (WBC) drop. Regarding both nanostructures, although the number of WBC increased in initial concentration, it decreased significantly at the concentration of 100 µg mL(-1) . It is worth mentioning that the toxicity of Ag nanoparticle on WBC was higher than that of MWNT-Arg. Because of potent antimicrobial activity and relative hemocompatibility, MWNT-Arg could be considered as a new candidate for biomedical applications in the future especially for hemodialysis membranes.
    Matched MeSH terms: Biocompatible Materials/toxicity; Biocompatible Materials/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links