Displaying all 4 publications

Abstract:
Sort:
  1. Yusof NZ, Azizul Hasan ZA, Abd Maurad Z, Idris Z
    Cutan Ocul Toxicol, 2018 Jun;37(2):103-111.
    PMID: 28693384 DOI: 10.1080/15569527.2017.1352595
    AIM: To evaluate eye irritation potential of palm-based methyl ester sulphonates (MES) of different chain lengths; C12, C14, C16, C16:18.

    METHODS: The Bovine Corneal Opacity and Permeability test method (BCOP), OECD Test Guideline 437, was used as an initial step to study the inducing effect of palm-based MES on irreversible eye damage. The second assessment involved the use of reconstructed human corneal-like epithelium test method, OECD Test Guideline 492 using SkinEthic™ Human Corneal Epithelium to study the potential effect of palm-based MES on eye irritancy. The palm-based MES were prepared in 10% solution (w/v) in deionized water and tested as a liquid and surfactant test substances whereby both test conducted according to the liquid/surfactant treatment protocol.

    RESULTS: The preliminary BCOP results showed that palm-based MES; C12, C14, C16, C16:18 were not classified as severe eye irritants test substances with in vitro irritancy score between 3 and the threshold level of 55. The second evaluation using SkinEthic™ HCE model showed that palm-based MES; C12, C14, C16, C16:18 and three commercial samples were potentially irritants to the eyes with mean tissue viability ≤ 60% and classified as Category 2 according to United Nations Globally Harmonized System of Classification and Labelling of Chemicals. However, there are some limitations of the proposed ocular irritation classification of palm-based MES due to insolubility of long chain MES in 10% solution (w/v) in deionized water.

    CONCLUSION: Therefore, future studies to clarify the eye irritation potential of the palm-based MES will be needed, and could include; methods to improve the test substance solubility, use of test protocol for solids, and/or inclusion of a benchmark anionic surfactant, such as sodium dodecyl sulphate within the study design.

  2. Yusof YA, Azizul Hasan ZA, Abd Maurad Z
    Int J Toxicol, 2024;43(2):157-164.
    PMID: 38048784 DOI: 10.1177/10915818231217041
    Methyl ester sulphonate (MES) is an anionic surfactant that is suitable to be used as an active ingredient in household products. Four palm-based MES compounds with various carbon chains, namely C12, C14, C16 and C16/18 MES, were assayed by the in vitro bacterial reverse mutation (Ames) test in the Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537 and the Escherichia coli strain WP2 uvrA, with the aim of establishing the safety data of the compounds, specifically their mutagenicity. The test was also carried out on linear alkylbenzene sulphonate (LAS) for comparison. The plate incorporation method was conducted according to the Organization for Economic Cooperation and Development (OECD) Test Guideline 471. All compounds were tested at five analysable non-cytotoxic concentrations, varying from .001 mg/plate to 5 mg/plate, with and without S-9 metabolic activation. All tested concentrations showed no significant increase in the number of revertant colonies compared to revertant colonies of the negative control. The Ames test indicated that each concentration of C12, C14, C16, C16/18 MES, and LAS used in this study induced neither base-pair substitutions nor frame-shift mutations in the S. typhimurium strains TA98, TA100, TA1535, and TA1537 and the E. coli strain WP2 uvrA. The results showed that C12, C14, C16 and C16/18 MES have no potential mutagenic properties in the presence and absence of S-9 metabolic activation, similarly to LAS. Therefore, the MES is safe to be used as an alternative to petroleum-based surfactants for household cleaning products.
  3. Abd Maurad Z, Abdullah LC, Anuar MS, Abdul Karim Shah NN, Idris Z
    Molecules, 2020 Jun 05;25(11).
    PMID: 32516971 DOI: 10.3390/molecules25112629
    Methyl ester sulphonates (MES) have been considered as an alternative green surfactant for the detergent market. Investigation on the purification of methyl ester sulphonates (MES) with various carbon chains of C12, C14, C16 and C16-18 derived from palm methyl ester is of great interest. These MES powders have been repeatedly crystallized with ethanol and the purity of MES has increased to a maximum of 99% active content and 96% crystallinity index without changing the structure. These crystallized MES with high active content have 1.0% to 2.3% moisture content and retained its di-salt content in the range of 5%. The crystallized MES C16 and C16-18 attained excellent flow characteristics. Morphology, structural and its crystallinity analyses showed that the crystals MES had good solubility properties, stable crystal structure (β polymorphic) and triclinic lateral structure when it is in high active content. The brittleness of MES crystals increased from a β' to a β subcell. Crystal with high brittleness has the potential to ease production of powder, which leads to a reduction in the cost of production and improves efficiency.
  4. Ahmad Hazmi AS, Abd Maurad Z, Mohd Noor MA, Nek Mat Din NSM, Idris Z
    J Sep Sci, 2021 Apr;44(7):1471-1481.
    PMID: 33522105 DOI: 10.1002/jssc.202000929
    Ethylene glycol is a super commodity chemical and it has vital roles in various applications. Its co-production with other chemicals, such as ethylene carbonate and glycerol carbonate, has promised cheaper production cost. Its quantification presents a challenge as its contaminants, such as ethylene carbonate, produce a signal-reducing effect in flame ionized detector. The aim of this study is to evaluate external standard to quantify the composition of glycol mixture. Measurement system analysis was employed on the external standard method. Reliability of the external standard is statistically significant with low p-values, excellent capability indices, and high F-values. The external standard is found to have remarkable precision and trueness as both capability indices are mirroring each other. Furthermore, the capability analysis has a strong correlation with quality measurement. Based on capability indices, the limit of detection is recommended at S/N = 25 and the limit of quantification is recommended at S/N = 100 for a reliable measurement. A high degree of reliability is achieved coherently as almost all uncertainties of coefficients of variations are less than 5%. The established method was validated and successfully applied to glycol mixture at azeotropic distillation pilot plant.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links