Displaying all 7 publications

  1. Ibraheem ZO, Majid RA, Sidek HM, Noor SM, Yam MF, Abd Rachman Isnadi MF, et al.
    PMID: 31915453 DOI: 10.1155/2019/7967980
    The emergence of drug-resistant strains of Plasmodium falciparum is the worst catastrophe that has ever confronted the dedicated efforts to eradicate malaria. This urged for searching other alternatives or sensitizers that reverse chloroquine resistance. In this experiment, the potential of andrographolide to inhibit plasmodial growth and reverse CQ resistance was tested in vitro using the SYBRE green-1-based drug sensitivity assay and isobologram technique, respectively. Its safety level toward mammalian cells was screened as well against Vero cells and RBCs using MTT-based drug sensitivity and RBC hemolysis assays, respectively. Its effect against hemozoin formation was screened using β-hematin formation and heme fractionation assays. Its molecular characters were determined using the conventional tests for the antioxidant effect measurement and the in silico molecular characterization using the online free chemi-informatic Molinspiration software. Results showed that andrographolide has a moderate antiplasmodium effect that does not entitle it to be a substituent for chloroquine. Furthermore, andrographolide ameliorated the sensitivity of the parasite to chloroquine. Besides, it showed an indirect inhibitory effect against hemozoin formation within the parasite and augmented the chloroquine-induced inhibition of hemozoin formation. The study suggests that its chloroquine resistance reversal effect may be due to inhibition of chloroquine accumulation or due to its impact on the biological activity of the parasite. Overall, this in vitro study is a clue for the reliability of andrographolide to be added with chloroquine for reversal of chloroquine resistance and tolerance, but further in vivo studies are recommended to confirm this notion. In spite of its prominent and safe in vitro and in vivo growth inhibitory effect and its in vitro chloroquine resistance reversing effect, it is inapplicable to implement it in malaria chemotherapy to substitute chloroquine or to reverse its resistance.
  2. Abd Rachman Isnadi MF, Chin VK, Abd Majid R, Lee TY, Atmadini Abdullah M, Bello Omenesa R, et al.
    Mediators Inflamm, 2018;2018:5346413.
    PMID: 29507527 DOI: 10.1155/2018/5346413
    Interleukin-33 (IL-33) is an IL-1 family member, which exhibits both pro- and anti-inflammatory properties solely based on the type of the disease itself. Generally, IL-33 is expressed by both endothelial and epithelial cells and mediates its function based on the interaction with various receptors, mainly with ST2 variants. IL-33 is a potent inducer for the Th2 immune response which includes defence mechanism in brain diseases. Thus, in this paper, we review the biological features of IL-33 and the critical roles of IL-33/ST2 pathway in selected neurological disorders including Alzheimer's disease, multiple sclerosis, and malaria infection to discuss the involvement of IL-33/ST2 pathway during these brain diseases and its potential as future immunotherapeutic agents or for intervention purposes.
  3. Zaid OI, Abd Majid R, Sidek HM, Noor SM, Abd Rachman-Isnadi MF, Bello RO, et al.
    Trop Biomed, 2020 Mar 01;37(1):29-49.
    PMID: 33612716
    Treatment Failure with chloroquine is one of the challenges that faced the dedicated efforts to eradicate malaria This study aims at investigating the impact of treatment failure with chloroquine on the progression of the disease-induced histo-pathogenic and immunogenic outcomes. To achieve this, Rane's protocol with modifications was applied on a model of Plasmodium berghei ANKA infected ICR mice to determine the dose response curve of chloroquine and to screen the treatment impact on the disease progression. Chloroquine was given at 1, 5, 10, 15 and 20 mg/kg once the parasitemia reached to 20-30% (the experimental initiation point). During the subsequent days, the mice were monitored for changes in the clinical signs, hematology parameters and the progress of the parasitemia until the parasitemia reached to 60-70% (the experimental termination point) or up to 10 days after chloroquine administration in case of achieving a complete eradication of the parasite. At the end, the mice were exsanguinated and their blood and organs were collected for the biochemistry and the histology study. A complete eradication of the parasite was achieved at 20 mg/kg while recrudescence was observed at the lower doses. At 1 mg/kg, the parasite growth was comparable to that of the positive control. The histo-pathogenic and immunogenic changes were stronger in the groups that experienced recrudescence (at 5 and 10 mg/kg). All in all, the study highlights the possibility of having a worsened clinical condition when chloroquine is given at its sub-therapeutic doses during malaria treatment.
  4. Bello RO, Chin VK, Abd Rachman Isnadi MF, Abd Majid R, Atmadini Abdullah M, Lee TY, et al.
    Int J Mol Sci, 2018 Apr 11;19(4).
    PMID: 29641433 DOI: 10.3390/ijms19041149
    The recently identified cytokines-interleukin (IL)-35 and interleukin (IL)-37-have been described for their anti-inflammatory and immune-modulating actions in numerous inflammatory diseases, auto-immune disorders, malignancies, infectious diseases and sepsis. Either cytokine has been reported to be reduced and in some cases elevated and consequently contributed towards disease pathogenesis. In view of the recent advances in utilizing cytokine profiles for the development of biological macromolecules, beneficial in the management of certain intractable immune-mediated disorders, these recently characterized cytokines (IL-35 and IL-37) offer potential as reasonable targets for the discovery of novel immune-modulating anti-inflammatory therapies. A detailed comprehension of their sophisticated regulatory mechanisms and patterns of expression may provide unique opportunities for clinical application as highly selective and target specific therapeutic agents. This review seeks to summarize the recent advancements in discerning the dynamics, mechanisms, immunoregulatory and anti-inflammatory actions of IL-35 and IL-37 as they relate to disease pathogenesis.
  5. Hambali NL, Mohd Noh M, Paramasivam S, Chua TH, Hayati F, Payus AO, et al.
    Front Public Health, 2020;8:584552.
    PMID: 33304877 DOI: 10.3389/fpubh.2020.584552
    Interleukin 6 (IL-6) is one of the markers of immune system activation indicating existent infection and inflammation. We present here a case of a 55-year-old male COVID-19 patient with an unusual high level of interleukin 6 (IL-6). Further investigation revealed he had hepatocellular carcinoma (HCC) with underlying hepatitis B. He did not present with respiratory symptoms although a baseline chest x-ray showed changes, and the patient was categorized as Class 3A of COVID-19. Routine investigations proceeded with high-resolution computed tomography and IL-6 to monitor for progression to severe COVID-19. Notably, there was a high IL-6 level but other parameters did not show he was in severe COVID-19. In this report, we conclude that elevated IL-6 level in a COVID-19 patient is not necessarily associated with severe COVID-19.
  6. Bello RO, Abdullah MA, Abd Majid R, Chin VK, Abd Rachman Isnadi MF, Ibraheem ZO, et al.
    Malar J, 2019 Dec 19;18(1):434.
    PMID: 31856836 DOI: 10.1186/s12936-019-3070-x
    BACKGROUND: The immune modulating potential of IL-35 in multiple human disorders has been reported. Consequent upon the recognition of inflammatory cytokine activation and its preponderance for mediating pathology during malaria infection, the study aimed to characterize the expression and functional contribution(s) of IL-35 in Plasmodium berghei (strain ANKA) infected mice.

    METHODS: Plasmodium berghei infection in male ICR mice was used as the rodent model of choice. The time course of IL-35 expression in the systemic circulation and tissues of P. berghei infected mice as well as their healthy control counterparts was assessed by enzyme linked immunosorbent assay and immunohistochemistry respectively. The effect of modulating IL-35 by recombinant IL-35 protein or neutralizing anti-Epstein-Barr virus-induced gene 3 antibody on the cytokine environment during P. berghei infection was assessed by flow cytometry. Furthermore, the influence of modulating IL-35 on histopathological hallmarks of malaria and disease progression was evaluated.

    RESULTS: Interleukin-35 was significantly up regulated in serum and tissues of P. berghei infected mice and correlated with parasitaemia. Neutralization of IL-35 significantly enhanced the release of IFN-γ, decreased the expression of IL-6 and decreased parasitaemia patency. Neutralization of IL-35 was also associated with a tendency towards increased survival as well as the absence of pathological features associated with malaria infection unlike recombinant IL-35 protein administration which sustained a normal course of infection and unfavourable malaria associated histological outcomes in P. berghei infected mice.

    CONCLUSION: These results indicate the involvement of IL-35 in P. berghei induced malaria infection. IL-35 neutralization strategies may represent viable therapeutic modalities beneficial for the resolution of malaria infection.

  7. Tan AF, Sakam SSB, Rajahram GS, William T, Abd Rachman Isnadi MF, Daim S, et al.
    Front Cell Infect Microbiol, 2022;12:1023219.
    PMID: 36325471 DOI: 10.3389/fcimb.2022.1023219
    Background: Plasmodium knowlesi causes zoonotic malaria across Southeast Asia. First-line diagnostic microscopy cannot reliably differentiate P. knowlesi from other human malaria species. Rapid diagnostic tests (RDTs) designed for P. falciparum and P. vivax are used routinely in P. knowlesi co-endemic areas despite potential cross-reactivity for species-specific antibody targets.

    Methods: Ten RDTs were evaluated: nine to detect clinical P. knowlesi infections from Malaysia, and nine assessing limit of detection (LoD) for P. knowlesi (PkA1-H.1) and P. falciparum (Pf3D7) cultures. Targets included Plasmodium-genus parasite lactate dehydrogenase (pan-pLDH) and P. vivax (Pv)-pLDH.

    Results: Samples were collected prior to antimalarial treatment from 127 patients with microscopy-positive PCR-confirmed P. knowlesi mono-infections. Median parasitaemia was 788/µL (IQR 247-5,565/µL). Pan-pLDH sensitivities ranged from 50.6% (95% CI 39.6-61.5) (SD BIOLINE) to 87.0% (95% CI 75.1-94.6) (First Response® and CareStart™ PAN) compared to reference PCR. Pv-pLDH RDTs detected P. knowlesi with up to 92.0% (95% CI 84.3-96.7%) sensitivity (Biocredit™). For parasite counts ≥200/µL, pan-pLDH (Standard Q) and Pv-pLDH RDTs exceeded 95% sensitivity. Specificity of RDTs against 26 PCR-confirmed negative controls was 100%. Sensitivity of six highest performing RDTs were not significantly different when comparing samples taken before and after (median 3 hours) antimalarial treatment. Parasite ring stages were present in 30% of pre-treatment samples, with ring stage proportions (mean 1.9%) demonstrating inverse correlation with test positivity of Biocredit™ and two CareStart™ RDTs.For cultured P. knowlesi, CareStart™ PAN demonstrated the lowest LoD at 25 parasites/µL; LoDs of other pan-pLDH ranged from 98 to >2000 parasites/µL. Pv-pLDH LoD for P. knowlesi was 49 parasites/µL. No false-positive results were observed in either P. falciparum-pLDH or histidine-rich-protein-2 channels.

    Conclusion: Selected RDTs demonstrate sufficient performance for detection of major human malaria species including P. knowlesi in co-endemic areas where microscopy is not available, particularly for higher parasite counts, although cannot reliably differentiate among non-falciparum malaria.

Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links