Displaying all 3 publications

Abstract:
Sort:
  1. Soopramanien M, Khan NA, Abdalla SAO, Sagathevan K, Siddiqui R
    Asian Pac J Cancer Prev, 2020 Oct 01;21(10):3011-3018.
    PMID: 33112561 DOI: 10.31557/APJCP.2020.21.10.3011
    OBJECTIVES: It is noteworthy that several animal species are known to withstand high levels of radiation, and are exposed to heavy metals but rarely been reported to develop cancer. For example, the scorpion has been used as folk medicine in ancient civilizations of Iran and China, while amphibian skin is known to possess medicinal properties. Here, we elucidated the anti-tumour activity of the scorpion (Uropygi) and frog (Lithobates catesbeianus).

    MATERIALS AND METHODS: Animals were procured and their organ lysates and sera were prepared and tested against Michigan Cancer Foundation-7 breast cancer (MCF-7), prostate cancer (PC3), Henrietta Lacks cervical cancer (HeLa), and normal human keratinocyte cells. Exoskeleton, appendages and hepatopancreas were dissected from the scorpion, whereas liver, lungs, heart, oviduct, gastrointestinal tract, gall bladder, kidneys, eggs and sera were collected from frog and organ lysates/sera were prepared. Growth inhibition assays and cytotoxicity assays were performed.

    RESULTS: Appendages, exoskeleton lysates, and hepatopancreas from scorpion exhibited potent growth inhibition, and cytotoxic effects. Furthermore, lungs, liver, gastrointestinal tract, heart, oviduct, kidneys, eggs, and sera from frog displayed growth inhibition and cytotoxic effects.

    CONCLUSION: Organ lysates, sera of scorpion, and amphibians possess anti-tumour activities. This is a worthy area of research as the molecular identity of the active molecule(s) together with their mechanism of action will lead to the rational development of novel anticancer agent(s).

  2. Anwar A, Abdalla SAO, Aslam Z, Shah MR, Siddiqui R, Khan NA
    Parasitol Res, 2019 Jul;118(7):2295-2304.
    PMID: 31093751 DOI: 10.1007/s00436-019-06329-3
    Acanthamoeba castellanii belonging to the T4 genotype is an opportunistic pathogen which is associated with blinding eye keratitis and rare but fatal central nervous system infection. A. castellanii pose serious challenges in antimicrobial chemotherapy due to its ability to convert into resistant, hardy shell-protected cyst form that leads to infection recurrence. The fatty acid composition of A. castellanii trophozoites is known to be most abundant in oleic acid which chemically is an unsaturated cis-9-Octadecanoic acid and naturally found in animal and vegetable fats and oils. This study was designed to evaluate antiacanthamoebic effects of oleic acid against trophozoites, cysts as well as parasite-mediated host cell cytotoxicity. Moreover, oleic acid-conjugated silver nanoparticles (AgNPs) were also synthesized and tested against A. castellanii. Oleic acid-AgNPs were synthesized by chemical reduction method and characterized by ultraviolet-visible spectrophotometry, atomic force microscopy, dynamic light scattering analysis, and Fourier transform infrared spectroscopy. Viability, growth inhibition, encystation, and excystation assays were performed with 10 and 5 μM concentration of oleic acid alone and oleic acid-conjugated AgNPs. Bioassays revealed that oleic acid alone and oleic acid-conjugated AgNPs exhibited significant antiamoebic properties, whereas nanoparticle conjugation further enhanced the efficacy of oleic acid. Phenotype differentiation assays also showed significant inhibition of encystation and excystation at 5 μM. Furthermore, oleic acid and oleic acid-conjugated AgNPs also inhibited amoebae-mediated host cell cytotoxicity as determined by lactate dehydrogenase release. These findings for the first time suggest that oleic acid-conjugated AgNPs exhibit antiacanthamoebic activity that hold potential for therapeutic applications against A. castellanii.
  3. Iqbal K, Abdalla SAO, Anwar A, Iqbal KM, Shah MR, Anwar A, et al.
    Antibiotics (Basel), 2020 May 25;9(5).
    PMID: 32466210 DOI: 10.3390/antibiotics9050276
    The pathogenic free-living amoeba, Acanthamoeba castellanii, is responsible for a rare but deadly central nervous system infection, granulomatous amoebic encephalitis and a blinding eye disease called Acanthamoeba keratitis. Currently, a combination of biguanides, amidine, azoles and antibiotics are used to manage these infections; however, the host cell cytotoxicity of these drugs remains a challenge. Furthermore, Acanthamoeba species are capable of transforming to the cyst form to resist chemotherapy. Herein, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with isoniazid, which were further loaded with amphotericin B (ISO-NPs-AMP) to cause potent antiamoebic effects against Acanthamoeba castellanii. The IC50 of isoniazid conjugated with magnetic nanoparticles and loaded with amphotericin B was found to be 45 μg/mL against Acanthamoeba castellanii trophozoites and 50 μg/mL against cysts. The results obtained in this study have promising implications in drug discovery as these nanomaterials exhibited high trophicidal and cysticidal effects, as well as limited cytotoxicity against rat and human cells.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links