Displaying all 3 publications

Abstract:
Sort:
  1. Abd Rahman NH, Md Jahim J, Abdul Munaim MS, A Rahman R, Fuzi SFZ, Md Illias R
    Enzyme Microb Technol, 2020 Apr;135:109495.
    PMID: 32146929 DOI: 10.1016/j.enzmictec.2019.109495
    E. coli has been engineered to produce xylitol, but the production faces bottlenecks in terms of production yield and cell viability. In this study, recombinant E. coli (rE. coli) was immobilized on untreated and treated multiwalled carbon nanotubes (MWCNTs) for xylitol production. The immobilized rE. coli on untreated MWCNTs gave the highest xylitol production (5.47 g L-1) and a productivity of 0.22 g L-1 h-1. The doubling time for the immobilized cells increased up to 20.40 h and was higher than that of free cells (3.67 h). Cell lysis of the immobilized cells was reduced by up to 73 %, and plasmid stability improved by up to 17 % compared to those of free cells. Xylitol production using the optimum parameters (pH 7.4, 0.005 mM and 29 °C) achieved a xylitol production and productivity of 6.33 g L-1 and 0.26 g L-1 h-1, respectively. A seven-cycle repeated batch fermentation was carried out for up to 168 h, which showed maximum xylitol production of 7.36 g L-1 during the third cycle. Hence, this new adsorption immobilization system using MWCNTs is an alternative to improve the production of xylitol.
  2. Sy Mohamad SF, Mohd Said F, Abdul Munaim MS, Mohamad S, Azizi Wan Sulaiman WM
    Crit Rev Biotechnol, 2020 May;40(3):341-356.
    PMID: 31931631 DOI: 10.1080/07388551.2020.1712321
    Reverse micellar extraction (RME) has emerged as a versatile and efficient tool for downstream processing (DSP) of various biomolecules, including structural proteins and enzymes, due to the substantial advantages over conventional DSP methods. However, the RME system is a complex dependency of several parameters that influences the overall selectivity and performance of the RME system, hence this justifies the need for optimization to obtain higher possible extraction results. For the last two decades, many experimental design strategies for screening and optimization of RME have been described in literature. The objective of this article is to review the use of different experimental designs and response surface methodologies that are currently used to screen and optimize the RME system for various types of biomolecules. Overall, this review provides the rationale for the selection of appropriate screening or optimization techniques for the parameters associated with both forward and backward extraction during the RME of biomolecules.
  3. Krishnan S, Suzana BN, Wahid ZA, Nasrullah M, Abdul Munaim MS, Din MFBM, et al.
    Biotechnol Rep (Amst), 2020 Sep;27:e00498.
    PMID: 32670809 DOI: 10.1016/j.btre.2020.e00498
    The application of the xylose reductase (XR) enzyme in the development of biotechnology demands an efficient and large scale enzyme separation technique. The aim of this present work was to optimize xylose reductase (XR) purification process through ultrafiltration membrane (UF) technology using Central composite design (CCD) of response surface methods (RSM). The three effective parameters analyzed were filtration time (0-100), transmembrane pressure (TMP) (1-1.6 bar), cross flow velocity (CFV) (0.52-1.2 cm/s-1) and its combined effect to obtain high flux with less possibility of membrane fouling. Experimental studies revealed that the best range for optimization process for filtration time, operational transmembrane pressure and cross flow velocity was 30 min, 1.4 bars and 1.06 cm/s, respectively as these conditions yielded the highest membrane permeability (56.03 Lm-2h-1 bar-1) and xylitol content (15.49 g/l). According to the analysis of variance (ANOVA), the p-value (<0.0001) indicated the designed model was highly significant. The error percentage between the actual and predicted value for membrane permeability and xylitol amount (2.21 % and 4.85 % respectively), which both were found to be close to the predicted values. The verification experiments gave membrane actual permeability of 57.3 Lm-2h-1 bar-1 and 16.29 g/l of xylitol production, thus indicating that the successfully developed model to predict the response.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links