Displaying all 15 publications

Abstract:
Sort:
  1. Gautam A, Paudel YN, Abidin S, Bhandari U
    Hum Exp Toxicol, 2019 Mar;38(3):356-370.
    PMID: 30526076 DOI: 10.1177/0960327118817862
    The current study investigated the role of guggulsterone (GS), a farnesoid X receptor antagonist, in the choline metabolism and its trimethylamine (TMA)/flavin monooxygenases/trimethylamine-N-oxide (TMAO) inhibiting potential in a series of in vitro and in vivo studies as determined by high-performance liquid chromatography (HPLC), mass spectroscopy (MS), and liquid chromatography (LC)-MS techniques. Atherosclerosis (AS) was successfully induced in a group of experimental animals fed with 2% choline diet for 6 weeks. Serum lipid profiles such as total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol were measured. Pro-inflammatory cytokines levels, markers for a hepatic injury, and oxidative stress markers were assessed. Interestingly, GS reduced the level of TMA/TMAO in both in vitro and in vivo studies as demonstrated by the peaks obtained from HPLC, MS, and LC-MS. Furthermore, GS exhibited cardioprotective and antihyperlipidemic effects as evidenced by the attenuation of levels of several serum lipid profiles and different atherogenic risk predictor indexes. GS also prevented hepatic injury by successfully restoring the levels of hepatic injury biomarkers to normal. Similarly, GS inhibited the production of pro-inflammatory cytokines levels, as well as GS, enhanced antioxidant capacity, and reduced lipid peroxidation. Histopathological study of aortic sections demonstrated that GS maintained the normal architecture in AS-induced rats. On the basis of results obtained from current investigation, we suggest that GS might have a great therapeutic potential for the treatment of AS.
  2. Abidin SAZ, Othman I, Naidu R
    Methods Mol Biol, 2021;2211:233-240.
    PMID: 33336281 DOI: 10.1007/978-1-0716-0943-9_16
    Shotgun proteomics has been widely applied to study proteins in complex biological samples. Combination of high-performance liquid chromatography with mass spectrometry has allowed for comprehensive protein analysis with high resolution, sensitivity, and mass accuracy. Prior to mass spectrometry analysis, proteins are extracted from biological samples and subjected to in-solution trypsin digestion. The digested proteins are subjected for clean-up and injected into the liquid chromatography-mass spectrometry system for peptide mass identification. Protein identification is performed by analyzing the mass spectrometry data on a protein search engine software such as PEAKS studio loaded with protein database for the species of interest. Results such as protein score, protein coverage, number of peptides, and unique peptides identified will be obtained and can be used to determine proteins identified with high confidence. This method can be applied to understand the proteomic changes or profile brought by bio-carrier-based therapeutics in vitro. In this chapter, we describe methods in which proteins can be extracted for proteomic analysis using a shotgun approach. The chapter outlines important in vitro techniques and data analysis that can be applied to investigate the proteome dynamics.
  3. Saleem H, Zengin G, Locatelli M, Abidin SAZ, Ahemad N
    Nat Prod Res, 2021 Feb 08.
    PMID: 33550873 DOI: 10.1080/14786419.2021.1880404
    Anagallis arvensis L. commonly known as 'Scarlet Pimpernel' has been used in folklore as natural remedy for treating common ailments. The present research is aimed to explore the phytochemical composition and enzyme inhibition potential of methanol and dichloromethane (DCM) extracts of A. arvensis aerial and root parts. The phytochemical composition was established via HPLC-PDA polyphenolic quantification and UHPLC-MS analysis, while the inhibition potential against amylase and tyrosinase enzymes were assessed using standard in vitro protocols. The HPLC-PDA polyphenolic quantification revealed the presence of important compounds including catechin, gallic acid, chlorogenic acid, and ferulic acid, whereas 34 different secondary metabolites were tentatively identified by UHPLC-MS of both the DCM extracts. All the extracts showed moderate tyrosinase and a weak amylase inhibition activity. The aerial-DCM extract showed comparatively higher tyrosinase and amylase enzyme inhibition potential, which may be due to the presence of secondary metabolites as tentatively identified by its UHPLC-MS profiling.
  4. Paudel YN, Kumari Y, Abidin SAZ, Othman I, Shaikh MF
    Int J Mol Sci, 2020 Apr 03;21(7).
    PMID: 32260203 DOI: 10.3390/ijms21072492
    Epilepsy is a devastating neurological condition exhibited by repeated spontaneous and unpredictable seizures afflicting around 70 million people globally. The basic pathophysiology of epileptic seizures is still elusive, reflecting an extensive need for further research. Developing a novel animal model is crucial in understanding disease mechanisms as well as in assessing the therapeutic target. Most of the pre-clinical epilepsy research has been focused on rodents. Nevertheless, zebrafish disease models are relevant to human disease pathophysiology hence are gaining increased attention nowadays. The current study for the very first time developed a pilocarpine-induced chronic seizure-like condition in adult zebrafish and investigated the modulation in several neuroinflammatory genes and neurotransmitters after pilocarpine exposures. Seizure score analysis suggests that compared to a single dose, repeated dose pilocarpine produces chronic seizure-like effects maintaining an average seizure score of above 2 each day for a minimum of 10 days. Compared to the single dose pilocarpine treated group, there was increased mRNA expression of HMGB1, TLR4, TNF-α, IL-1, BDNF, CREB-1, and NPY; whereas decreased expression of NF-κB was upon the repeated dose of pilocarpine administration. In addition, the epileptic group demonstrates modulation in neurotransmitters levels such as GABA, Glutamate, and Acetylcholine. Moreover, proteomic profiling of the zebrafish brain from the normal and epileptic groups from LCMS/MS quantification detected 77 and 13 proteins in the normal and epileptic group respectively. Summing up, the current investigation depicted that chemically induced seizures in zebrafish demonstrated behavioral and molecular alterations similar to classical rodent seizure models suggesting the usability of adult zebrafish as a robust model to investigate epileptic seizures.
  5. Al-Busaidi H, Karim ME, Abidin SAZ, Tha KK, Chowdhury EH
    Toxics, 2019 Feb 22;7(1).
    PMID: 30813300 DOI: 10.3390/toxics7010010
    BACKGROUND: The efficacy of chemotherapy is undermined by adverse side effects and chemoresistance of target tissues. Developing a drug delivery system can reduce off-target side effects and increase the efficacy of drugs by increasing their accumulation in target tissues. Inorganic salts have several advantages over other drug delivery vectors in that they are non-carcinogenic and less immunogenic than viral vectors and have a higher loading capacity and better controlled release than lipid and polymer vectors.

    METHODS: MgF₂ crystals were fabricated by mixing 20 mM MgCl₂ and 10 mM NaF and incubating for 30 min at 37 °C. The crystals were characterized by absorbance, dynamic light scattering, microscopic observance, pH sensitivity test, SEM, EDX and FTIR. The binding efficacy to doxorubicin was assessed by measuring fluorescence intensity. pH-dependent doxorubicin release profile was used to assess the controlled release capability of the particle-drug complex. Cellular uptake was assessed by fluorescence microscopy. Cytotoxicity of the particles and the drug-particle complex were assessed using MTT assay to measure cell viability of MCF-7 cells.

    RESULTS AND DISCUSSION: Particle size on average was estimated to be <200 nm. The crystals were cubic in shape. The particles were pH-sensitive and capable of releasing doxorubicin in increasing acidic conditions. MgF₂ nanocrystals were safe in lower concentrations, and when bound to doxorubicin, enhanced its uptake. The protein corona formed around MgF₂ nanoparticles lacks typical opsonins but contains some dysopsonins.

    CONCLUSION: A drug delivery vector in the form of MgF₂ nanocrystals has been developed to transport doxorubicin into breast cancer cells. It is pH-sensitive (allowing for controlled release), size-modifiable, simple and cheap to produce.

  6. Haque ST, Karim ME, Abidin SAZ, Othman I, Holl MMB, Chowdhury EH
    Nanomaterials (Basel), 2020 Apr 27;10(5).
    PMID: 32349272 DOI: 10.3390/nano10050834
    Breast cancer is the abnormal, uncontrollable proliferation of cells in the breast. Conventional treatment modalities like chemotherapy induce deteriorating side effects on healthy cells. Non-viral inorganic nanoparticles (NPs) confer exclusive characteristics, such as, stability, controllable shape and size, facile surface modification, and unique magnetic and optical properties which make them attractive drug carriers. Among them, carbonate apatite (CA) particles are pH-responsive in nature, enabling rapid intracellular drug release, but are typically heterogeneous with the tendency to self-aggregate. Here, we modified the nano-carrier by partially substituting Ca2+ with Mg2+ and Fe3+ into a basic lattice structure of CA, forming Fe/Mg-carbonate apatite (Fe/Mg-CA) NPs with the ability to mitigate self-aggregation, form unique protein corona in the presence of serum and efficiently deliver doxorubicin (DOX), an anti-cancer drug into breast cancer cells. Two formulations of Fe/Mg-CA NPs were generated by adding different concentrations of Fe3+ and Mg2+ along with a fixed amount of Ca2+ in bicarbonate buffered DMEM (Dulbecco's Modified Eagle's Medium), followed by 30 min incubation at 37 °C. Particles were characterized by turbidity analysis, z-average diameter and zeta potential measurement, optical microscopy, field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), flame atomic absorption spectroscopy (FAAS), pH dissolution, drug binding, cellular uptake, thiazolyl blue tetrazolium bromide (MTT) assay, stability analysis, and protein corona study by LCMS (Liquid chromatography-mass spectrometry). Both formulations of Fe/Mg-CA displayed mostly uniform nano-sized particles with less tendency to aggregate. The EDX and FAAS elemental analysis confirmed the weight (%) of Ca, Fe and Mg, along with their Ca/P ratio in the particles. A constant drug binding efficiency was noticed with 5 μM to 10 μM of initial DOX concentration. A pH dissolution study of Fe/Mg-CA NPs revealed the quick release of DOX in acidic pH. Enhancement of cytotoxicity for the chemotherapy drug was greater for Fe/Mg-CA NPs as compared to CA NPs, which could be explained by an increase in cellular internalization as a result of the small z-average diameter of the former. The protein corona study by LCMS demonstrated that Fe/Mg-CA NPs exhibited the highest affinity towards transport proteins without binding with opsonins. Biodistribution study was performed to study the effect of DOX-loaded Fe/Mg-CA NPs on the tissue distribution of DOX in Balb/c 4T1 tumor-bearing mice. Both formulations of Fe/Mg-CA NPs have significantly increased the accumulation of DOX in tumors. Interestingly, high Fe/Mg-CA NPs exhibited less off-target distribution compared to low Fe/Mg-CA NPs. Furthermore, the blood plasma analysis revealed prolonged blood circulation half-life of DOX-loaded low and high Fe/Mg-CA NPs compared to free DOX solution. Modifying CA NPs with Fe3+ and Mg2+, thereby, led to the generation of nano-sized particles with less tendency to aggregate, enhancing the drug binding efficiency, cellular uptake, and cytotoxicity without hampering drug release in acidic pH, while improving the circulation half-life and tumor accumulation of DOX. Therefore, Fe/Mg-CA which predominantly forms a transport protein-related protein corona could be a proficient carrier for therapeutic delivery in breast cancer.
  7. Siddiqui A, Abidin SAZ, Shah ZA, Othman I, Kumari Y
    PMID: 37100105 DOI: 10.1016/j.cbpc.2023.109636
    Globally around 24 million elderly population are dealing with dementia, and this pathological characteristic is commonly seen in people suffering from Alzheimer's disease (AD). Despite having multiple treatment options that can mitigate AD symptoms, there is an imperative call to advance our understanding of the disease pathogenesis to unfold disease-modifying treatments/therapies. To explore the driving mechanisms of AD development, we stretch out further to study time-dependant changes after Okadaic acid (OKA)-induced AD-like conditions in zebrafish. We evaluated the pharmacodynamics of OKA at two-time points, i.e., after 4-days and 10-days exposure to zebrafish. T-Maze was utilized to observe the learning and cognitive behaviour, and inflammatory gene expressions such as 5-Lox, Gfap, Actin, APP, and Mapt were performed in zebrafish brains. To scoop everything out from the brain tissue, protein profiling was performed using LCMS/MS. Both time course OKA-induced AD models have shown significant memory impairment, as evident from T-Maze. Gene expression studies of both groups have reported an overexpression of 5-Lox, GFAP, Actin, APP, and OKA 10D group has shown remarkable upregulation of Mapt in zebrafish brains. In the case of protein expression, the heatmap suggested an important role of some common proteins identified in both groups, which can be explored further to investigate their mechanism in OKA-induced AD pathology. Presently, the preclinical models available to understand AD-like conditions are not completely understood. Hence, utilizing OKA in the zebrafish model can be of great importance in understanding the pathology of AD progression and as a screening tool for drug discovery.
  8. Saleem H, Ahmad I, Zengin G, Mahomoodally FM, Rehman Khan KU, Ahsan HM, et al.
    Nat Prod Res, 2020 Dec;34(23):3373-3377.
    PMID: 30678488 DOI: 10.1080/14786419.2018.1564299
    In this study, different parts (aerial, stem and root) of Salvadora oleoides Decne were investigated in order to explore their phytochemical composition and biological potential. The bioactive contents were evaluated by conventional spectrophotometric methods. Additionally, the secondary metabolite compounds were identified by UHPLC-MS analysis. Biological potential was evaluated by determining antioxidant (DPPH, FRAP, and Phosphomolybdenum) and enzyme inhibitory (butrylcholinesterase and lipoxygenase) effects. Higher total bioactive contents were found in methanolic extracts which tend to correlate with higher radical scavenging and reducing potential of these extracts. LC/MS spectrum revealed the presence of 16 different secondary metabolites belonging to terpene, glucoside and sesquiterpenoid dervivatives. Glucocleomin and emotin A were the main compounds present in all three parts. The strongest butrylcholinesterase and lipoxygenase inhibitory activity was observed for root and stem DCM extracts. Demonstrated biological potential of S. oleoides plant can trace a new road map for developing newly designed bioactive pharmaceuticals.
  9. Saleem H, Zengin G, Khan KU, Ahmad I, Waqas M, Mahomoodally FM, et al.
    Nat Prod Res, 2021 Feb;35(4):664-668.
    PMID: 30919661 DOI: 10.1080/14786419.2019.1587427
    This study sets out to probe into total bioactive contents, UHPLC-MS secondary metabolites profiling, antioxidant (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum and metal chelating) and enzyme inhibitory (acetylcholinesterase- AChE, butyrylcholinesterase- BChE, α-amylase, α glucosidase, and tyrosinase) activities of methanol extract of Aerva javanica, also known as desert cotton or Kapok bush. Aerva javanica contains considerable phenolic (44.79 ± 3.12 mg GAE/g) and flavonoid (28.86 ± 0.12 mg QE/g) contents which tends to correlate with its significant antioxidant potential for ABTS, FRAP and CUPRAC assays with values of 101.41 ± 1.18, 124.10 ± 1.71 and 190.22 ± 5.70 mg TE/g, respectively. The UHPLC-MS analysis identified the presence of 45 phytochemicals belonging to six major groups: phenolic, flavonoids, lignin, terpenes, glycoside and alkaloid. Moreover, the plant extract also showed potent inhibitory action against AChE (3.73 ± 0.22 mg GALAE/g), BChE (3.31 ± 0.19 mg GALAE/g) and tyrosinase (126.05 ± 1.77 mg KAE/g). The observed results suggest A. javanica could be further explored as a natural source of bioactive compounds.
  10. Mahendra CK, Abidin SAZ, Htar TT, Chuah LH, Khan SU, Ming LC, et al.
    Molecules, 2021 Apr 01;26(7).
    PMID: 33916053 DOI: 10.3390/molecules26072000
    In this day and age, the expectation of cosmetic products to effectively slow down skin photoaging is constantly increasing. However, the detrimental effects of UVB on the skin are not easy to tackle as UVB dysregulates a wide range of molecular changes on the cellular level. In our research, irradiated keratinocyte cells not only experienced a compromise in their redox system, but processes from RNA translation to protein synthesis and folding were also affected. Aside from this, proteins involved in various other processes like DNA repair and maintenance, glycolysis, cell growth, proliferation, and migration were affected while the cells approached imminent cell death. Additionally, the collagen degradation pathway was also activated by UVB irradiation through the upregulation of inflammatory and collagen degrading markers. Nevertheless, with the treatment of Swietenia macrophylla (S. macrophylla) seed extract and fractions, the dysregulation of many genes and proteins by UVB was reversed. The reversal effects were particularly promising with the S. macrophylla hexane fraction (SMHF) and S. macrophylla ethyl acetate fraction (SMEAF). SMHF was able to oppose the detrimental effects of UVB in several different processes such as the redox system, DNA repair and maintenance, RNA transcription to translation, protein maintenance and synthesis, cell growth, migration and proliferation, and cell glycolysis, while SMEAF successfully suppressed markers related to skin inflammation, collagen degradation, and cell apoptosis. Thus, in summary, our research not only provided a deeper insight into the molecular changes within irradiated keratinocytes, but also serves as a model platform for future cosmetic research to build upon. Subsequently, both SMHF and SMEAF also displayed potential photoprotective properties that warrant further fractionation and in vivo clinical trials to investigate and obtain potential novel bioactive compounds against photoaging.
  11. Rusmili MRA, Othman I, Abidin SAZ, Yusof FA, Ratanabanangkoon K, Chanhome L, et al.
    PLoS One, 2019;14(12):e0227122.
    PMID: 31887191 DOI: 10.1371/journal.pone.0227122
    Malayan krait (Bungarus candidus) is a medically important snake species found in Southeast Asia. The neurotoxic effects of envenoming present as flaccid paralysis of skeletal muscles. It is unclear whether geographical variation in venom composition plays a significant role in the degree of clinical neurotoxicity. In this study, the effects of geographical variation on neurotoxicity and venom composition of B. candidus venoms from Indonesia, Malaysia and Thailand were examined. In the chick biventer cervicis nerve-muscle preparation, all venoms abolished indirect twitches and attenuated contractile responses to nicotinic receptor agonists, with venom from Indonesia displaying the most rapid neurotoxicity. A proteomic analysis indicated that three finger toxins (3FTx), phospholipase A2 (PLA2) and Kunitz-type serine protease inhibitors were common toxin groups in the venoms. In addition, venom from Thailand contained L-amino acid oxidase (LAAO), cysteine rich secretory protein (CRISP), thrombin-like enzyme (TLE) and snake venom metalloproteinase (SVMP). Short-chain post-synaptic neurotoxins were not detected in any of the venoms. The largest quantity of long-chain post-synaptic neurotoxins and non-conventional toxins was found in the venom from Thailand. Analysis of PLA2 activity did not show any correlation between the amount of PLA2 and the degree of neurotoxicity of the venoms. Our study shows that variation in venom composition is not limited to the degree of neurotoxicity. This investigation provides additional insights into the geographical differences in venom composition and provides information that could be used to improve the management of Malayan krait envenoming in Southeast Asia.
  12. Ali JS, Saleem H, Mannan A, Zengin G, Mahomoodally MF, Locatelli M, et al.
    BMC Complement Med Ther, 2020 Oct 16;20(1):313.
    PMID: 33066787 DOI: 10.1186/s12906-020-03093-1
    BACKGROUND: Ethnobotanical and plant-based products allow for the isolation of active constituents against a number of maladies. Monotheca buxifolia is used by local communities due to its digestive and laxative properties, as well as its ability to cure liver, kidney, and urinary diseases. There is a need to explore the biological activities and chemical constituents of this medicinal plant.

    METHODS: In this work, the biochemical potential of M. buxifolia (Falc.) A. DC was explored and linked with its biological activities. Methanol and chloroform extracts from leaves and stems were investigated for total phenolic and flavonoid contents. Ultrahigh-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) was used to determine secondary-metabolite composition, while high-performance liquid chromatography coupled with photodiode array detection (HPLC-PDA) was used for polyphenolic quantification. In addition, we carried out in vitro assays to determine antioxidant potential and the enzyme-inhibitory response of M. buxifolia extracts.

    RESULTS: Phenolics (91 mg gallic-acid equivalent (GAE)/g) and flavonoids (48.86 mg quercetin equivalent (QE)/g) exhibited their highest concentration in the methanol extract of stems and the chloroform extract of leaves, respectively. UHPLC-MS analysis identified a number of important phytochemicals, belonging to the flavonoid, phenolic, alkaloid, and terpenoid classes of secondary metabolites. The methanol extract of leaves contained a diosgenin derivative and polygalacin D, while kaempferol and robinin were most abundant in the chloroform extract. The methanol extract of stems contained a greater peak area for diosgenin and kaempferol, whereas this was true for lucidumol A and 3-O-cis-coumaroyl maslinic acid in the chloroform extract. Rutin, epicatechin, and catechin were the main phenolics identified by HPLC-PDA analysis. The methanol extract of stems exhibited significant 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activities (145.18 and 279.04 mmol Trolox equivalent (TE)/g, respectively). The maximum cupric reducing antioxidant capacity (CUPRAC) (361.4 mg TE/g), ferric-reducing antioxidant power (FRAP) (247.19 mg TE/g), and total antioxidant potential (2.75 mmol TE/g) were depicted by the methanol extract of stems. The methanol extract of leaves exhibited stronger inhibition against acetylcholinesterase (AChE) and glucosidase, while the chloroform extract of stems was most active against butyrylcholinesterase (BChE) (4.27 mg galantamine equivalent (GALAE)/g). Similarly, the highest tyrosinase (140 mg kojic-acid equivalent (KAE)/g) and amylase (0.67 mmol acarbose equivalent (ACAE)/g) inhibition was observed for the methanol extract of stems.

    CONCLUSIONS: UHPLC-MS analysis and HPLC-PDA quantification identified a number of bioactive secondary metabolites of M. buxifolia, which may be responsible for its antioxidant potential and enzyme-inhibitory response. M. buxifolia can be further explored for the isolation of its active components to be used as a drug.

  13. Mahendra CK, Ser HL, Abidin SAZ, Khan SU, Pusparajah P, Htar TT, et al.
    Biomed Pharmacother, 2023 Apr 15;162:114659.
    PMID: 37068335 DOI: 10.1016/j.biopha.2023.114659
    Fair flawless skin is the goal for some cultures and the development of irregular skin pigmentation is considered an indication of premature skin aging. Hence, there is a rising demand for skin whitening cosmetics. Thus, this research will be focusing on discovering the anti-pigmentation properties of Swietenia macrophylla seeds. Firstly, the seeds were extracted with ethanol and further fractionate based on their polarity before testing them on zebrafish embryos. The ethanolic extract of the seed demonstrated significant inhibition of both tyrosinase activity and melanin production in the embryos. However, after fractionation, the anti-melanogenic ability was observed to have decreased, signifying that the phytocompounds may be synergistic in nature. Still in the proteomic studies the ethanolic extract and its hexane fraction both induced the downregulation of cathepsin LB and cytoskeletal proteins that have connections to the melanogenic pathway, confirming that S. macrophylla seeds do indeed have anti-pigmentation properties that can be exploited for cosmetic use. Next, limonoids (tetranortriterpenoids found in the seed) were tested for their inhibitory effect against human tyrosinase related protein 1 (TYRP-1) via molecular docking. It was found that limonoids have a stronger binding affinity to TYRP-1 than kojic acid, suggesting that these phytocompounds may have the potential in inhibiting pigmentation. However, this still needs further confirmation before these phytocompounds can be developed into a skin whitening agent. Other assays like ex-vivo or 3D human skin culture can also be used to better study the seeds anti-pigmentation effect on humans.
  14. Khan KM, Nadeem MF, Mannan A, Chohan TA, Islam M, Ansari SA, et al.
    Chem Biodivers, 2024 Jan;21(1):e202301375.
    PMID: 38031244 DOI: 10.1002/cbdv.202301375
    Trillium govanianum is a high-value medicinal herb, having multifunctional traditional and culinary uses. The present investigation was carried out to evaluate the phytochemical, biological and toxicological parameters of the T. govanianum Wall. ex D. Don (Family: Trilliaceae) roots collected from Azad Kashmir, Pakistan. Phytochemical profiling was achieved by determining total bioactive contents (total phenolic and flavonoid contents) and UHPLC-MS analysis. For biological evaluation, antioxidant activities (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, and metal chelation assays) and enzyme inhibition activities (against AChE, BChE, glucosidase, amylase, and tyrosinase) were performed. Moreover, cytotoxicity was assessed against three human carcinoma cell lines (MDA-MB-231, CaSki, and DU-145). The tested extract was found to contain higher total phenolics (7.56 mg GAE/g dry extract) as compared to flavonoid contents (0.45 mg RE/g dry extract). Likewise, for the antioxidant activity, higher CUPRAC activity was noted with 39.84 mg TE/g dry extract values. In the case of enzyme assays, higher activity was pointed out against the cholinesterase, glucosidase and tyrosinase enzymes. The plant extract displayed significant cytotoxicity against the cell lines examined. Moreover, the in-silico studies highlighted the interaction between the important phytochemicals and tested enzymes. To conclude, the assessed biological activity and the existence of bioactive phytochemicals in the studied plant extract may pave the way for the development of novel pharmaceuticals.
  15. Chaisakul J, Khow O, Wiwatwarayos K, Rusmili MRA, Prasert W, Othman I, et al.
    Toxins (Basel), 2021 Jul 26;13(8).
    PMID: 34437392 DOI: 10.3390/toxins13080521
    Acute kidney injury (AKI) following Eastern Russell's viper (Daboia siamensis) envenoming is a significant symptom in systemically envenomed victims. A number of venom components have been identified as causing the nephrotoxicity which leads to AKI. However, the precise mechanism of nephrotoxicity caused by these toxins is still unclear. In the present study, we purified two proteins from D. siamensis venom, namely RvPLA2 and RvMP. Protein identification using LCMS/MS confirmed the identity of RvPLA2 to be snake venom phospholipase A2 (SVPLA2) from Thai D. siamensis venom, whereas RvMP exhibited the presence of a factor X activator with two subunits. In vitro and in vivo pharmacological studies demonstrated myotoxicity and histopathological changes of kidney, heart, and spleen. RvPLA2 (3-10 µg/mL) caused inhibition of direct twitches of the chick biventer cervicis muscle preparation. After administration of RvPLA2 or RvMP (300 µg/kg, i.p.) for 24 h, diffuse glomerular congestion and tubular injury with minor loss of brush border were detected in envenomed mice. RvPLA2 and RvMP (300 µg/kg; i.p.) also induced congestion and tissue inflammation of heart muscle as well as diffuse congestion of mouse spleen. This study showed the significant roles of PLA2 and SVMP in snake bite envenoming caused by Thai D. siamensis and their similarities with observed clinical manifestations in envenomed victims. This study also indicated that there is a need to reevaluate the current treatment strategies for Thai D. siamensis envenoming, given the potential for irreversible nephrotoxicity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links