Displaying all 5 publications

Abstract:
Sort:
  1. Adnan MA, Abdur Razzaque M, Ahmed I, Isnin IF
    Sensors (Basel), 2013;14(1):299-345.
    PMID: 24368702 DOI: 10.3390/s140100299
    For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted.
  2. Othman N, Kamarudin SK, Takriff MS, Rosli MI, Engku Chik EM, Meor Adnan MA
    ScientificWorldJournal, 2014;2014:619474.
    PMID: 25170524 DOI: 10.1155/2014/619474
    This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD) using computational fluid dynamics (CFD). In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT). Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD) was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-ε turbulence model was performed using CFD techniques. The multiple reference frame (MRF) was implemented and a steady state was initially achieved followed by a transient condition for RTD determination.
  3. Othman N, Kamarudin SK, Takriff MS, Rosli MI, Engku Chik EM, Adnan MA
    ScientificWorldJournal, 2014;2014:242658.
    PMID: 24741344 DOI: 10.1155/2014/242658
    Radiotracer experiments are carried out in order to determine the mean residence time (MRT) as well as percentage of dead zone, V dead (%), in an integrated mixer consisting of Rushton and pitched blade turbine (PBT). Conventionally, optimization was performed by varying one parameter and others were held constant (OFAT) which lead to enormous number of experiments. Thus, in this study, a 4-factor 3-level Taguchi L9 orthogonal array was introduced to obtain an accurate optimization of mixing efficiency with minimal number of experiments. This paper describes the optimal conditions of four process parameters, namely, impeller speed, impeller clearance, type of impeller, and sampling time, in obtaining MRT and V dead (%) using radiotracer experiments. The optimum conditions for the experiments were 100 rpm impeller speed, 50 mm impeller clearance, Type A mixer, and 900 s sampling time to reach optimization.
  4. Lee NY, Khoo WK, Adnan MA, Mahalingam TP, Fernandez AR, Jeevaratnam K
    J Pharm Pharmacol, 2016 Jun 10.
    PMID: 27283048 DOI: 10.1111/jphp.12565
    Phyllanthus niruri is a traditional shrub of the genus Phyllanthaceae with long-standing Ayurvedic, Chinese and Malay ethnomedical records. Preliminary studies from cell and animal model have provided valuable scientific evidence for its use.
  5. Mohd Yatim AA, Ismail NA, Hamid MRY, Mohd Adnan MA, Phoon BL, Johan MR, et al.
    J Nanosci Nanotechnol, 2020 02 01;20(2):741-751.
    PMID: 31383069 DOI: 10.1166/jnn.2020.16946
    The vanadium (V) and nitrogen (N) dopants on TiO₂ demonstrated superior photocatalytic performance for the degradation of methylene blue (MB) dye under visible light. The vanadium, V, N-co-doped TiO₂ was synthesized by a modified sol-gel method. It revealed that V and N codoping had a significant effect on the band gap (Eg) of TiO₂, where the pristine TiO₂ possessed a wide band gap (3.18 eV) compared to V-doped TiO₂ (2.89 eV) and N-doped TiO₂ (2.87 eV) while the V, N-co-doped TiO₂ depicted the narrowest band gap (2.65 eV). The greatly increased specific surface area for the V, N-co-doped TiO₂ (103.87 m²/g) as compared to P25 TiO₂ (51.68 m²/g) also contributed to the major improvement in the MB dye degradation efficiency (0.055 min-1). The V, N-co-doped TiO₂ exhibit rapid photocatalytic activity for the degradation of MB with almost 99% of degradation in 120 minutes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links