Displaying all 7 publications

Abstract:
Sort:
  1. Hassan LEA, Iqbal MA, Dahham SS, Tabana YM, Ahamed MBK, Majid AMSA
    Anticancer Agents Med Chem, 2017;17(4):590-598.
    PMID: 27671298 DOI: 10.2174/1871520616666160926113711
    BACKGROUND: Cancer is characterized by uncontrolled cell division caused by dysregulation of cell proliferation. Therefore, agents that impair cancer cell proliferation could have potential therapeutic value. Higher plants are considered to be a good source of anticancer agents, and several clinically tested chemotherapeutic agents have been isolated from plants or derived from constituents of plant origin.

    METHODS: In the present study, a prenylated flavone (isoglabratephrin) was isolated from aerial parts of Tephrosia apollinea using a bioassay-guided technique. Chemical structure of the isolated compound was elucidated using spectroscopic techniques (NMR, IR, and LC-MC), elemental analysis and confirmed by using single crystal X-ray analysis. The antiproliferative effect of isoglabratephrin was tested using three human cancer cell lines (prostate (PC3), pancreatic (PANC-1), and colon (HCT-116) and one normal cell line (human fibroblast).

    RESULTS: Isoglabratephrin displayed selective inhibitory activity against proliferation of PC3 and PANC-1 cells with median inhibitory concentration values of 20.4 and 26.6 μg/ml, respectively. Isoglabratephrin demonstrated proapoptotic features, as it induced chromatin dissolution, nuclear condensation, and fragmentation. It also disrupted the mitochondrial membrane potential in the treated cancer cells.

    CONCLUSION: Isoglabratephrin could be a new lead to treat human prostate (PC3) and pancreatic (PANC-1) malignancies.

  2. Kamal A, Nazari V M, Yaseen M, Iqbal MA, Ahamed MBK, Majid ASA, et al.
    Bioorg Chem, 2019 09;90:103042.
    PMID: 31226469 DOI: 10.1016/j.bioorg.2019.103042
    Three benzimidazolium salts (III-V) and respective selenium adducts (VI-VIII) were designed, synthesized and characterized by various analytical techniques (FT-IR and NMR 1H, 13C). Selected salts and respective selenium N-Heterocyclic carbenes (selenium-NHC) adducts were tested in vitro against Cervical Cancer Cell line (Hela), Breast Adenocarcinoma cell line (MCF-7), Retinal Ganglion Cell line (RGC-5) and Mouse Melanoma Cell line (B16F10) using MTT assay and the results were compared with standard drug 5-Fluorouracil. Se-NHC compounds and azolium salts showed significant anticancer potential. Molecular docking studies of compounds (VI, VII and VIII) showed strong binding energies and ligand affinity toward following angiogenic factors: VEGF-A (vascular endothelial growth factor A), EGF (human epidermal growth factor), HIF (Hypoxia-inducible factor) and COX-1 (Cyclooxygenase-1) suggesting that the anticancer activity of adducts (VI, VII and VIII) may be due to their strong anti-angiogenic effect. In addition, compounds III-VIII were screened for their antibacterial and antifungal potential. Adduct VI was found to be potent anti-fungal agent against A. Niger with zone of inhibition (ZI) value 27.01 ± 0.251 mm which is better than standard drug Clotrimazole tested in parallel.
  3. Hayat K, Tariq U, Wong QA, Quah CK, Majid ASA, Nazari V M, et al.
    Comput Biol Chem, 2021 Oct;94:107567.
    PMID: 34500323 DOI: 10.1016/j.compbiolchem.2021.107567
    Benzimidazolium salts (3-6) were synthesized as stable N-Heterocyclic Carbene (NHC) precursors and their selenium-NHC compounds/Selenones (7-10) were prepared using water as a solvent. Characterization of each of the synthesized compounds was carried out by various analytical and spectroscopic (FT-IR, 1H-, 13C NMR) methods. X-ray crystallographic analyses of single crystals obtained for salts 3 and 5 were carried out. Synthesized salts and their Se-NHCs were tested in-vitro for their anticancer potential against Cervical Cancer Cell line from Henrietta Lacks (HeLa), Breast cancer cell line (MDA-MB-231), Adenocarcinoma cell line (A549) and human normal endothelial cell line (EA.hy926). MTT assay was used for analysis and compared with standard drug 5-flourouracil. Benzimidazolium salts (3-6) and their selenium counter parts (7-10) were found potent anticancer agents. Salt 3-5 were found to be potent anticancer against HeLa with IC50 values 0.072, 0.017 and 0.241 μM, respectively, which are less than standard drug (4.9 μM). The Se-NHCs (7-10) had also shown significant anticancer potential against HeLa with IC50 values less than standard drug. Salts 3, 4 against EA.hy926, compounds 3,5,6, and 10 against MDA-MB-321, and compounds 4, 10 against A-549 cell line were found more potent anticancer agents with IC50 values less than standard drug. Molecular docking for (7-10) showed their good anti-angiogenic potential having low binding energy and significant inhibition constant values with VEGFA (vascular endothelial growth factor), EGF (human epidermal growth factor), COX1 (cyclooxygenase-1) and HIF (hypoxia inducible factor).
  4. Asif M, Shafaei A, Abdul Majid AS, Ezzat MO, Dahham SS, Ahamed MBK, et al.
    Chin J Nat Med, 2017 Jul;15(7):505-514.
    PMID: 28807224 DOI: 10.1016/S1875-5364(17)30076-6
    Considering the great potential of natural products as anticancer agents, the present study was designed to explore the molecular mechanisms responsible for anticancer activities of Mesua ferrea stem bark extract against human colorectal carcinoma. Based on MTT assay results, bioactive sub-fraction (SF-3) was selected for further studies using HCT 116 cells. Repeated column chromatography resulted in isolation of less active α-amyrin from SF-3, which was identified and characterized by GC-MS and HPLC methods. α-amyrin and betulinic acid contents of SF-3 were measured by HPLC methods. Fluorescent assays revealed characteristic apoptotic features, including cell shrinkage, nuclear condensation, and marked decrease in mitochondrial membrane potential in SF-3 treated cells. In addition, increased levels of caspases-9 and -3/7 levels were also observed in SF-3 treated cells. SF-3 showed promising antimetastatic properties in multiple in vitro assays. Multi-pathway analysis revealed significant down-regulation of WNT, HIF-1α, and EGFR with simultaneous up-regulation of p53, Myc/Max, and TGF-β signalling pathways in SF-3 treated cells. In addition, promising growth inhibitory effects were observed in SF-3 treated HCT 116 tumour spheroids, which give a hint about in vivo antitumor efficacy of SF-3 phytoconstituents. In conclusion, these results demonstrated that anticancer effects of SF-3 towards colon cancer are through modulation of multiple molecular pathways.
  5. Jafari SF, Al-Suede FSR, Yehya AHS, Ahamed MBK, Shafaei A, Asif M, et al.
    Biomed Pharmacother, 2020 Oct;130:110602.
    PMID: 32771894 DOI: 10.1016/j.biopha.2020.110602
    PURPOSE: Koetjapic acid is an active compound of a traditional medicinal plant, Sandoricum koetjape. Although koetjapic acid has a promising anticancer potential, yet it is highly insoluble in aqueous solutions. To increase aqueous solubility of koetjapic acid, we have previously reported a chemical modification of koetjapic acid to potassium koetjapate (KKA). However, pharmacokinetics of KKA has not been studied. In this study, pharmacokinetics and antiangiogenic efficacy of KKA are investigated.

    METHODS: Pharmacokinetics of KKA was studied after intravenous and oral administration in SD rats using HPLC. Anti-angiogenic efficacy of KKA was investigated in rat aorta, human endothelial cells (EA.hy926) and nude mice implanted with matrigel.

    RESULTS: Pharmacokinetic study revealed that KKA was readily absorbed into blood and stayed for a long time in the body with Tmax 2.89 ± 0.12 h, Cmax 7.24 ± 0.36 μg/mL and T1/2 1.46 ± 0.03 h. The pharmacological results showed that KKA significantly suppressed sprouting of microvessels in rat aorta with IC50 18.4 ± 4.2 μM and demonstrated remarkable inhibition of major endothelial functions such as migration, differentiation and VEGF expression in endothelial cells. Further, KKA significantly inhibited vascularization in matrigel plugs implanted in nude mice.

    CONCLUSIONS: The results indicate that bioabsorption of KKA from oral route was considerably efficient with longer retention in body than compared to that of the intravenous route. Further, improved antiangiogenic activity of KKA was recorded which could probably be due to its increased solubility and bioavailability. The results revealed that KKA inhibits angiogenesis by suppressing endothelial functions and expression of VEGF.

  6. Al-Dulaimi DW, Shah Abdul Majid A, M Baharetha H, Ahamed MBK, Faisal SF, Al Zarzour RH, et al.
    Drug Chem Toxicol, 2020 Apr 22.
    PMID: 32321321 DOI: 10.1080/01480545.2020.1749652
    Orthosiphon stamineus (O.S) is widely consumed for its medidcinal value including anti-inflammatory, anti-infective, and diuretic properties. The present study evaluates the cytoprotective, anti-mutagenic, and anticlastogenic efficacies of standardized extract of Orthosiphon stamineus. Normal liver cell line (WRL68) exposed to hydrogen peroxide and serum-deprived media as insults to evaluate cytoprotective and glutathione activation activities of (Et. O. s). Salmonella typhimurium TA98 and TA100 exposed to different concentrations of (Et. O. s). The influence of Et. O. s on mitotic, replicative indices as well as chromosomal aberration (CA) and sister chromatid exchange (SCE) induced in human peripheral blood lymphocytes by mitomycin C (MMC). The Et. O.s proved to be a potent scavenger for hydrogen peroxide and other free radicals in serum-depraved media, which showed to stimulate glutathione production in liver cells line. Moreover, it did not induce mutations in S. typhimurium subspecies TA98 and TA100. The standardized extract exhibited powerful antimutagenic activities as verified against both 2-nitrofluorene and sodium azide in S. typhimurium TA98 and TA100 cells, respectively. Cytogenetic tests showed high concentrations of Et. O. s to reduce the values of mitotic and replicative indices without any accompanying side effects, such as chromosomal abnormalities or SCE. To ameliorate MMC effects, pretreatment with the extract proofed to be efficient protocol. These data suggests that O. stamineus extract could be useful as cytoprotective, antimutagenic, and anticlastogenic efficacies, which owes to its potent chemoprevention, antioxidant, and glutathione activation properties.
  7. Dahham SS, Tabana Y, Asif M, Ahmed M, Babu D, Hassan LE, et al.
    Int J Mol Sci, 2021 Sep 29;22(19).
    PMID: 34638895 DOI: 10.3390/ijms221910550
    Beta-Caryophyllene (BCP), a naturally occurring sesquiterpene abundantly found in cloves, hops, and cannabis, is the active candidate of a relatively new group of vascular-inhibiting compounds that aim to block existing tumor blood vessels. Previously, we have reported the anti-cancer properties of BCP by utilizing a series of in-vitro anti-tumor-related assays using human colorectal carcinoma cells. The present study aimed to investigate the effects of BCP on in-vitro, ex-vivo, and in-vivo models of anti-angiogenic assays and evaluate its anti-cancer activity in xenograft tumor (both ectopic and orthotopic) mice models of human colorectal cancer. Computational structural analysis and an apoptosis antibody array were also performed to understand the molecular players underlying this effect. BCP exhibited strong anti-angiogenic activity by blocking the migration of endothelial cells, tube-like network formation, suppression of vascular endothelial growth factor (VEGF) secretion from human umbilical vein endothelial cells and sprouting of rat aorta microvessels. BCP has a probable binding at Site#0 on the surface of VEGFR2. Moreover, BCP significantly deformed the vascularization architecture compared to the negative control in a chick embryo chorioallantoic membrane assay. BCP showed a remarkable reduction in tumor size and fluorescence molecular tomography signal intensity in all the mice treated with BCP, in a dose-dependent relationship, in ectopic and orthotopic tumor xenograft models, respectively. The histological analysis of the tumor from BCP-treated mice revealed a clear reduction of the density of vascularization. In addition, BCP induced apoptosis through downregulation of HSP60, HTRA, survivin, and XIAP, along with the upregulation of p21 expressions. These results suggest that BCP acts at multiple stages of angiogenesis and could be used as a promising therapeutic candidate to halt the growth of colorectal tumor cells.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links