Displaying all 4 publications

Abstract:
Sort:
  1. Ali Ahmed AB, Taha RM
    Adv. Food Nutr. Res., 2011;64:403-16.
    PMID: 22054964 DOI: 10.1016/B978-0-12-387669-0.00031-4
    Biofilms are a natural part of the ecology of the earth. Many biofilms are quite harmful and must be treated or controlled. Other biofilms are beneficial and can be used to help fix serious problems. Biofilms can grow on many different surfaces, including rocks in water, foods, teeth, and various biomedical implants. This bacterial colonization may present the need for additional operations, amputation, or it may even lead to death. The fundamental principles of bacterial cell attachment and biofilm formation are discussed. Biofilms represents a new, wide-open field practice and research that is only going to get hotter with time. Functional organic plasma polymerized coatings are also discussed for their potential as bio-sensitive interfaces, connecting metallic electronic devices with their physiological environments.
  2. Ahmed AB, Adel M, Karimi P, Peidayesh M
    Adv. Food Nutr. Res., 2014;73:197-220.
    PMID: 25300548 DOI: 10.1016/B978-0-12-800268-1.00010-X
    Marine carbohydrates are most important organic molecules made by photosynthetic organisms. It is very essential for humankind: the role in being an energy source for the organism and they are considered as an important dissolve organic compound (DOC) in marine environment's sediments. Carbohydrates found in different marine environments in different concentrations. Polysaccharides of carbohydrates play an important role in various fields such as pharmaceutical, food production, cosmeceutical, and so on. Marine organisms are good resources of nutrients, and they are rich carbohydrate in sulfated polysaccharide. Seaweeds (marine microalgae) are used in different pharmaceutical industries, especially in pharmaceutical compound production. Seaweeds have a significant amount of sulfated polysaccharides, which are used in cosmeceutical industry, besides based on the biological applications. Since then, traditional people, cosmetics products, and pharmaceutical applications consider many types of seaweed as an important organism used in food process. Sulfated polysaccharides containing seaweed have potential uses in the blood coagulation system, antiviral activity, antioxidant activity, anticancer activity, immunomodulating activity, antilipidepic activity, etc. Some species of marine organisms are rich in polysaccharides such as sulfated galactans. Various polysaccharides such as agar and alginates, which are extracted from marine organisms, have several applications in food production and cosmeceutical industries. Due to their high health benefits, compound-derived extracts of marine polysaccharides have various applications and traditional people were using them since long time ago. In the future, much attention is supposed to be paid to unraveling the structural, compositional, and sequential properties of marine carbohydrate as well.
  3. Suely A, Zabed H, Ahmed AB, Mohamad J, Nasiruddin M, Sahu JN, et al.
    Fish Physiol Biochem, 2016 Apr;42(2):431-44.
    PMID: 26501361 DOI: 10.1007/s10695-015-0149-3
    Increasing demand for eco-friendly botanical piscicides and pesticides as replacements for harmful synthetic chemicals has led to investigation of new sources of plant materials. Stem bark of Terminalia arjuna, which has been used as a popular folk medicine since ancient time, was examined for its piscicidal activity. This study aims to determine toxicity of ethanol extract of T. arjuna bark on fresh water stinging catfish (Heteropneustes fossilis), along with evaluation of changes in hematological parameters of the fishes exposed to a lethal concentration. The percent mortality of fishes varied significantly in response to concentrations of the extract and exposure times (between exposure time F = 36.57, p < 0.001; between concentrations F = 39.93, p < 0.001). The lethal concentrations (LC50) of ethanol extract were found to be 12.7, 8.94, 5.63 and 4.71 mg/l for 24, 48, 72 and 96 h, respectively. During acute toxicity test, blood samples of treatment fishes showed significant decreases in the red blood cells count, hematocrit content, hemoglobin concentration, mean corpuscular hemoglobin concentration and plasma protein level when compared to those of the control group, while there were significant increases in the mean corpuscular volume, mean corpuscular hemoglobin, white blood cells count and plasma glucose concentration. These results suggest that T. arjuna bark extract could be considered as a potent piscicide due to its toxic effect on fish, particularly fish hematology.
  4. Ahmed AB, Rao AS, Rao MV, Taha RM
    ScientificWorldJournal, 2012;2012:897867.
    PMID: 22629221 DOI: 10.1100/2012/897867
    Gymnema sylvestre (R.Br.) is an important diabetic medicinal plant which yields pharmaceutically active compounds called gymnemic acid (GA). The present study describes callus induction and the subsequent batch culture optimization and GA quantification determined by linearity, precision, accuracy, and recovery. Best callus induction of GA was noticed in MS medium combined with 2,4-D (1.5 mg/L) and KN (0.5 mg/L). Evaluation and isolation of GA from the calluses derived from different plant parts, namely, leaf, stem and petioles have been done in the present case for the first time. Factors such as light, temperature, sucrose, and photoperiod were studied to observe their effect on GA production. Temperature conditions completely inhibited GA production. Out of the different sucrose concentrations tested, the highest yield (35.4 mg/g d.w) was found at 5% sucrose followed by 12 h photoperiod (26.86 mg/g d.w). Maximum GA production (58.28 mg/g d.w) was observed in blue light. The results showed that physical and chemical factors greatly influence the production of GA in callus cultures of G. sylvestre. The factors optimized for in vitro production of GA during the present study can successfully be employed for their large-scale production in bioreactors.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links