Displaying all 8 publications

Abstract:
Sort:
  1. Nasef MM, Gupta B, Shameli K, Verma C, Ali RR, Ting TM
    Polymers (Basel), 2021 Sep 15;13(18).
    PMID: 34578003 DOI: 10.3390/polym13183102
    The interest in developing antimicrobial surfaces is currently surging with the rise in global infectious disease events. Radiation-induced graft copolymerization (RIGC) is a powerful technique enabling permanent tunable and desired surface modifications imparting antimicrobial properties to polymer substrates to prevent disease transmission and provide safer biomaterials and healthcare products. This review aims to provide a broader perspective of the progress taking place in strategies for designing various antimicrobial polymeric surfaces using RIGC methods and their applications in medical devices, healthcare, textile, tissue engineering and food packing. Particularly, the use of UV, plasma, electron beam (EB) and γ-rays for biocides covalent immobilization to various polymers surfaces including nonwoven fabrics, films, nanofibers, nanocomposites, catheters, sutures, wound dressing patches and contact lenses is reviewed. The different strategies to enhance the grafted antimicrobial properties are discussed with an emphasis on the emerging approach of in-situ formation of metal nanoparticles (NPs) in radiation grafted substrates. The current applications of the polymers with antimicrobial surfaces are discussed together with their future research directions. It is expected that this review would attract attention of researchers and scientists to realize the merits of RIGC in developing timely, necessary antimicrobial materials to mitigate the fast-growing microbial activities and promote hygienic lifestyles.
  2. Salleh MSN, Ali RR, Shameli K, Hamzah MY, Kasmani RM, Nasef MM
    Polymers (Basel), 2021 Oct 17;13(20).
    PMID: 34685342 DOI: 10.3390/polym13203578
    The production of pure silver nanoparticles (Ag-NPs) with unique properties remains a challenge even today. In the present study, the synthesis of silver nanoparticles (Ag-NPs) from natural pullulan (PL) was carried out using a radiation-induced method. It is known that pullulan is regarded as a microbial polysaccharide, which renders it suitable to act as a reducing and stabilizing agent during the production of Ag-NPs. Pullulan-assisted synthesis under gamma irradiation was successfully developed to obtain Ag-NPs, which was characterized by UV-Vis, XRD, TEM, and Zeta potential analysis. Pullulan was used as a stabilizer and template for the growth of silver nanoparticles, while gamma radiation was modified to be selective to reduce silver ions. The formation of Ag-NPs was confirmed using UV-Vis spectra by showing a surface plasmon resonance (SPR) band in the region of 410-420 nm. As observed by TEM images, it can be said that by increasing the radiation dose, the particle size decreases, resulting in a mean diameter of Ag-NPs ranging from 40.97 to 3.98 nm. The XRD analysis confirmed that silver metal structures with a face-centered cubic (FCC) crystal were present, while TEM images showed a spherical shape with smooth edges. XRD also demonstrated that increasing the dose of gamma radiation increases the crystallinity at a high purity of Ag-NPs. As examined by zeta potential, the synthesized Ag-NP/PL was negatively charged with high stability. Ag-NP/PL was then analysed for antimicrobial activity against Staphylococcus aureus, and it was found that it had high antibacterial activity. It is found that the adoption of radiation doses results in a stable and green reduction process for silver nanoparticles.
  3. Naderipour A, Abdul-Malek Z, Davoodkhani IF, Kamyab H, Ali RR
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71677-71688.
    PMID: 34241794 DOI: 10.1007/s11356-021-14799-1
    Due to the increased complexity and nonlinear nature of microgrid systems such as photovoltaic, wind-turbine fuel cell, and energy storage systems (PV/WT/FC/ESSs), load-frequency control has been a challenge. This paper employs a self-tuning controller based on the fuzzy logic to overcome parameter uncertainties of classic controllers, such as operation conditions, the change in the operating point of the microgrid, and the uncertainty of microgrid modeling. Furthermore, a combined fuzzy logic and fractional-order controller is used for load-frequency control of the off-grid microgrid with the influence of renewable resources because the latter controller benefits robust performance and enjoys a flexible structure. To reach a better operation for the proposed controller, a novel meta-heuristic whale algorithm has been used to optimally determine the input and output scale coefficients of the fuzzy controller and fractional orders of the fractional-order controller. The suggested approach is applied to a microgrid with a diesel generator, wind turbine, photovoltaic systems, and energy storage devices. The comparison made between the results of the proposed controller and those of the classic PID controller proves the superiority of the optimized fractional-order self-tuning fuzzy controller in terms of operation characteristics, response speed, and the reduction in frequency deviations against load variations.
  4. Sha'rani SS, Nasef MM, Jusoh NWC, Isa EDM, Ali RR
    Sci Technol Adv Mater, 2024;25(1):2300697.
    PMID: 38249722 DOI: 10.1080/14686996.2023.2300697
    A selective composite membrane for vanadium redox flow battery (VRFB) was successfully prepared by layer-by-layer (LbL) technique using a perfluorosulfonic sulfonic acid or Nafion 117 (N117). The composite membrane referred as N117-(PEI/GO)n, was obtained by depositing alternating layers of positively charged polyethylenimine (PEI) and negatively charged graphene oxide (GO) as polyelectrolytes. The physicochemical properties and performance of the pristine and composite membranes were investigated. The membrane showed an enhancement in proton conductivity and simultaneously exhibited a notable 90% reduction in vanadium permeability. This, in turn, results in a well-balanced ratio of proton conductivity to vanadium permeability, leading to high selectivity. The highest selectivity of the LbL membranes was found to be 19.2 × 104 S.min/cm3, which is 13 times higher than the N117 membrane (n = 0). This was translated into an improvement in the battery performance, with the n = 1 membrane showing a 4-6% improvement in coulombic efficiency and a 7-15% improvement in voltage efficiency at current densities ranging from 40 to 80 mA/cm2. Furthermore, the membrane displays stable operation over a long-term stability at around 88% at a current density of 40 mA/cm2, making it an attractive option for VRFB applications using the LbL technique. The use of PEI/GO bilayers maintains high proton conductivity and VE of the battery, opening up possibilities for further optimization and improvement of VRFBs.
  5. Rahman FA, Naidu J, Ngiu CS, Yaakob Y, Mohamed Z, Othman H, et al.
    Asian Pac J Cancer Prev, 2016;17(8):4037-41.
    PMID: 27644658
    BACKGROUND: Hepatocellular carcinoma (HCC) is a common cancer that is frequently diagnosed at an advanced stage. Transarterial chemoembolisation (TACE) is an effective palliative treatment for patients who are not eligible for curative treatment. The two main methods for performing TACE are conventional (c-TACE) or with drug eluting beads (DEB-TACE). We sought to compare survival rates and tumour response between patients undergoing c-TACE and DEB-TACE at our centre.

    MATERIALS AND METHODS: A retrospective cohort study of patients undergoing either treatment was carried out from January 2009 to December 2014. Tumour response to the procedures was evaluated according to the modified Response Evaluation Criteria in Solid Tumors (mRECIST). Kaplan-Meier analysis was used to assess and compare the overall survival in the two groups.

    RESULTS: A total of 79 patients were analysed (34 had c-TACE, 45 had DEB-TACE) with a median follow-up of 11.8 months. A total of 20 patients in the c-TACE group (80%) and 12 patients in the DEB-TACE group (44%) died during the follow up period. The median survival durations in the c-TACE and DEB-TACE groups were 4.9 ± 3.2 months and 8.3 ± 2.0 months respectively (p=0.008). There was no statistically significant difference noted among the two groups with respect to mRECIST criteria.

    CONCLUSIONS: DEB-TACE demonstrated a significant improvement in overall survival rates for patients with unresectable HCC when compared to c-TACE. It is a safe and promising approach and should potentially be considered as a standard of care in the management of unresectable HCC.

  6. Yusefi M, Nasef MM, Tareq MA, Gupta B, Shameli K, Ali RR, et al.
    Polymers (Basel), 2022 Nov 10;14(22).
    PMID: 36432958 DOI: 10.3390/polym14224831
    Functional polymeric biomaterials (FPBMs) with bioactive characteristics obtained by radiation-induced graft copolymerisation (RIGC) have been subjected to intensive research and developed into many commercial products. Various studies have reported the development of a variety of radiation-grafted FPBMs. However, no reports dealing with the quantitative evaluations of these studies from a global bibliographic perspective have been published. Such bibliographic analysis can provide information to overcome the limitations of the databases and identify the main research trends, together with challenges and future directions. This review aims to provide an unprecedented bibliometric analysis of the published literature on the use of RIGC for the preparation of FPBMs and their applications in medical, biomedical, biotechnological, and health care fields. A total of 235 publications obtained from the Web of Science (WoS) in the period of 1985-2021 were retrieved, screened, and evaluated. The records were used to manifest the contributions to each field and underline not only the top authors, journals, citations, years of publication, and countries but also to highlight the core research topics and the hubs for research excellence on these materials. The obtained data overviews are likely to provide guides to early-career scientists and their research institutions and promote the development of new, timely needed radiation-grafted FPBMs, in addition to extending their applications.
  7. Yusefi M, Shameli K, Lee-Kiun MS, Teow SY, Moeini H, Ali RR, et al.
    Int J Biol Macromol, 2023 Apr 01;233:123388.
    PMID: 36706873 DOI: 10.1016/j.ijbiomac.2023.123388
    Polysaccharide-based magnetic nanocomposites can eminently illuminate several attractive features as anticancer drug carriers. In this study, rice straw-based cellulose nanowhisker (CNW) was used as solid support for Fe3O4 nanofillers to synthesize magnetic CNW. Then, cross-linked chitosan-coated magnetic CNW for 5-fluorouracil carrier abbreviated as CH/MCNW/5FU. Fourier-transform infrared, X-Ray diffraction, and X-ray photoelectron spectroscopy analysis indicated successful fabrication and multifunctional properties of the CH/MCNW/5FU nanocomposites. In addition, CH/MCNW/5FU nanocomposites showed hydrodynamic diameter and zeta potential value of 181.31 ± 3.46 nm and +23 ± 1.8 mV, respectively. Based on images of transmission electron microscopy, magnetic CNW as reinforcement was coated with chitosan to obtain almost spherical CH/MCNW/5FU nanocomposites with an average diameter of 37.16 ± 3.08. The nanocomposites indicated desired saturation magnetization and thermal stability, high drug encapsulation efficiency, and pH-dependent swelling and drug release performance. CH/MCNW/5FU nanocomposites showed potent killing effects against colorectal cancer cells in both 2D monolayer and 3D spheroid models. These findings suggest CH/MCNW as a potential carrier for anticancer drugs with high tumour-penetrating capacity.
  8. Yusefi M, Lee-Kiun MS, Shameli K, Teow SY, Ali RR, Siew KK, et al.
    Carbohydr Polym, 2021 Dec 01;273:118523.
    PMID: 34560940 DOI: 10.1016/j.carbpol.2021.118523
    Magnetic polymer nanocomposites are inherently multifunctional and harbor assorted physiochemical actions for applications thereof as novel drug nanocarriers. Herein, Fe3O4-nanoparticles were supported on rice straw cellulose for 5-fluorouracil carrier abbreviated as MC/5-FU for potential colorectal cancer treatments. Several analyses indicated the multifunctional properties of MC/5-FU bionanocomposites. Transmission and scanning electron microscopy study demonstrated that Fe3O4 nanofillers covered the cellulose matrix. The drug release from MC/5-FU was evaluated under various pH and temperature conditions, showing the maximum release at pH 7.4 and 44.2 °C. In in vitro anticancer assay, MC/5-FU exhibited enhanced selectivity and anticancer actions against 2D monolayer and 3D tumour spheroid models colorectal cancer cells. The anticancer effects of MC/5-FU with magnetic targeting and heat induction were also examined. This easily synthesized MC/5-FU indicated the potential in application as a low-cost drug formulation for colorectal cancer treatments.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links