Displaying all 2 publications

Abstract:
Sort:
  1. Fonseka HA, Ameruddin AS, Caroff P, Tedeschi D, De Luca M, Mura F, et al.
    Nanoscale, 2017 Sep 21;9(36):13554-13562.
    PMID: 28872181 DOI: 10.1039/c7nr04598k
    The usability and tunability of the essential InP-InGaAs material combination in nanowire-based quantum wells (QWs) are assessed. The wurtzite phase core-multi-shell InP-InGaAs-InP nanowire QWs are characterised using cross-section transmission electron microscopy and photoluminescence measurements. The InP-InGaAs direct interface is found to be sharp while the InGaAs-InP inverted interface is more diffused, in agreement with their planar counterpart. Bright emission is observed from the single nanowires containing the QWs at room temperature, with no emission from the InP core or outer barrier. The tunability of the QW emission wavelength in the 1.3-1.55 μm communication wavelength range is demonstrated by varying the QW thickness and in the 1.3 μm range by varying the composition. The experiments are supported by simulation of the emission wavelength of the wurtzite phase InP-InGaAs QWs in the thickness range considered. The radial heterostructure is further extended to design multiple QWs with bright emission, therefore establishing the capability of this material system for nanowire based optical devices for communication applications.
  2. Ameruddin AS, Fonseka HA, Caroff P, Wong-Leung J, Op het Veld RL, Boland JL, et al.
    Nanotechnology, 2015 May 22;26(20):205604.
    PMID: 25927420 DOI: 10.1088/0957-4484/26/20/205604
    Obtaining compositional homogeneity without compromising morphological or structural quality is one of the biggest challenges in growing ternary alloy compound semiconductor nanowires. Here we report growth of Au-seeded InxGa1-xAs nanowires via metal-organic vapour phase epitaxy with uniform composition, morphology and pure wurtzite (WZ) crystal phase by carefully optimizing growth temperature and V/III ratio. We find that high growth temperatures allow the InxGa1-xAs composition to be more uniform by suppressing the formation of typically observed spontaneous In-rich shells. A low V/III ratio results in the growth of pure WZ phase InxGa1-xAs nanowires with uniform composition and morphology while a high V/III ratio allows pure zinc-blende (ZB) phase to form. Ga incorporation is found to be dependent on the crystal phase favouring higher Ga concentration in ZB phase compared to the WZ phase. Tapering is also found to be more prominent in defective nanowires hence it is critical to maintain the highest crystal structure purity in order to minimize tapering and inhomogeneity. The InP capped pure WZ In0.65Ga0.35As core-shell nanowire heterostructures show 1.54 μm photoluminescence, close to the technologically important optical fibre telecommunication wavelength, which is promising for application in photodetectors and nanoscale lasers.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links