Displaying all 19 publications

Abstract:
Sort:
  1. Chan PF, Ang KP, Hamid RA
    Biometals, 2021 04;34(2):365-391.
    PMID: 33555494 DOI: 10.1007/s10534-021-00286-0
    Interest in bismuth(III) dithiocarbamate complexes as potential drug candidates is increasing due to their low toxicity compared to other group 15 elements (pnictogen) of the periodic table. Bismuth dithiocarbamate compounds have been reported to induce greater cytotoxicity in various human carcinoma cancer cell lines. Using various in vitro cancer-related assays, we investigated the antiproliferative activity of bismuth diethyldithiocarbamate, denoted as 1, against the MCF-7 human breast adenocarcinoma cell line and the effect on genes that may be involved in antiproliferation, apoptosis, DNA fragmentation, invasion and polyubiquitination functions. In general, 1 exhibited high cytotoxicity in MCF-7 cells, with an IC50 of 1.26 ± 0.02 µM, by inducing the intrinsic apoptotic pathway, as ascertained by measurements of intracellular reactive oxygen species (ROS), caspase activity, the amount of cytochrome c released and the extent of DNA fragmentation and by staining assays that reveal apoptotic cells. In addition, 1 significantly attenuated cell invasion and modulated several cancer-related genes, including PLK2, FIGF, FLT4, PARP4, and HDAC11, as determined via gene expression analysis. The NF-κB signaling pathway was inhibited by 1 upon the activation of Lys48- and Lys63-linked polyubiquitination, thus leading to its degradation via the proteasome. Overall, 1 has the potential to act as an antiproliferative agent and a proteasome inhibitor in estrogen-positive breast cancer.
  2. Ang KP, Chan PF, Hamid RA
    Biometals, 2021 02;34(1):141-160.
    PMID: 33196940 DOI: 10.1007/s10534-020-00269-7
    Based on the recent studies depicting the potential of heterometallic gold complexes as potent antiproliferative agents, herein we first reported the preliminary mechanistic data on the in-vitro antiproliferative activity of tricyclohexylphosphanegold(I) n-mercaptobenzoate, Cy3PAu(n-MBA) where n = 2 (1), 3 (2) and 4 (3), and MBA = mercaptobenzoic acid, treated using MCF-7 breast cancer and A2780 ovarian cancer cells, respectively. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to assess the cytotoxicity of both cancer cells treated with 1-3, respectively. The IC50 of 1-3 were applied to the subsequent assays including cell invasion and thioredoxin reductase (TrxR) as well as ubiquitin activities specifically on Lys48 and Lys63-linked polyubiquitin chains via flowcytometric analysis. The mechanistic effect of 1-3 towards both cells were evaluated on human p53 signaling gene expressions via RT2 profiler Polymerase Chain Reductase (PCR) array. 1-3 were found to be highly cytotoxic towards both MCF-7 and A2780 cancer cell lines with the compounds were more sensitive towards the latter cells. 1-3 also suppressed TrxR and cell invasion activities by modulating p53 related genes related with proliferation, invasion and TrxR activities i.e. CCNB1, TP53, CDK4 etc. 1-3 also regulated Lys48 and Lys63-linked polyubiquitination by reactivation of p53, suggesting the ability of this gene in regulating inhibition of cytoskeletal reorganization via epithelial-mesenchymal transition (EMT), required for tumor progression. Taken together, the overall findings denoted that 1-3 exerted potent antiproliferative activity in MCF-7 and A2780 cells via activation of the p53 signaling pathway.
  3. Ang KP, Chan PF, Hamid RA
    J Biol Inorg Chem, 2021 10;26(7):833-853.
    PMID: 34476610 DOI: 10.1007/s00775-021-01892-6
    Tricyclohexylphosphanegold(I) n-mercaptobenzoate (n = 2, 3, 4) labelled as 1-3 were previously reported to significantly suppress thioredoxin reductase (TrxR) activities towards ovarian cancer cells, A2780, in vitro. Herein, we explored the role of 1-3 for their apoptosis inducing ability against A2780 cells. 1-3 exhibited IC50 values at 1.19 ± 0.03 µM, 2.28 ± 0.04 μM and 0.78 ± 0.01 μM, respectively, compared to cisplatin at 26.8 ± 0.15 µM. The compounds induced A2780 apoptosis via a caspase-dependent mitochondrion pathway as evidenced by ROS production, cytochrome c release, caspases-3/7, -8, -9 and -10 activation, APAF1 and BAX upregulation as well as BCL2A1 and BCL2 genes' downregulation. In addition, the death mode of 1-3 was also mediated via death receptor extrinsic pathway manifested by FAS, FASL, FADD, and TNFR1 genes' upregulation via Human Rt PCR analysis. In addition, 1-3 significantly caused A2780 arrest at S phase, which was associated with the upregulation of TP53, E2F1, RB1 and CDKN1A upregulation and downregulation of CDK1, CDK4, CDC25A and CDC25C genes. Based on these promising results, these phosphanegold(I) thiolate derivatives could act as feasible candidates for further advanced in vivo ovarian cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.
  4. Chan PF, Ang KP, Hamid RA
    J Biol Inorg Chem, 2024 Feb 18.
    PMID: 38369679 DOI: 10.1007/s00775-023-02041-x
    We previously reported that the bismuth(III) dithiocarbamate derivative, bismuth diethyldithiocarbamate (1) exhibited greater cytotoxicity while inducing apoptosis via the intrinsic pathway in MCF-7 cells. We further evaluated the other bismuth(III) dithiocarbamate derivatives, Bi[S2CNR]3, with R = (CH2CH2OH)(iPr), (CH2)4, and (CH2CH2OH)(CH3), denoted as 2, 3, and 4, respectively, in the same MCF-7 cell line. 2-4 were found to exhibit IC50 values of 10.33 ± 0.06 µM, 1.07 ± 0.01 µM and 25.37 ± 0.12 µM, respectively, compared to that of cisplatin at 30.53 ± 0.23 µM. Apoptotic promotion via the mitochondrial-dependent pathway was due to the elevation of intracellular reactive oxygen species (ROS), promotion of caspases, release of cytochrome c, fragmentation of DNA, and results of staining assay observed in all compound-treated cells. 2-4 are also capable of suppressing MCF-7 cell invasion and modulate Lys-48 also Lys-63 linked polyubiquitination, leading to proteasomal degradation. Analysis of gene expression via qRT-PCR revealed their modulation, which supported all activities conducted upon treatment with 2-4. Altogether, bismuth dithiocarbamate derivatives, with bismuth(III) as the metal center bound to ligands, isopropyl ethanol, pyrrolidine, and methyl ethanol dithiocarbamate, are potential anti-breast cancer agents that induce apoptosis and suppress metastasis. Further studies using other breast cancer cell lines and in vivo studies are recommended to clarify the anticancer effects of these compounds.
  5. Ang KP, Quek ZQ, Lee CY, Lu HT
    Med J Malaysia, 2019 12;74(6):561-563.
    PMID: 31929492
    The clinical presentation of acute myocarditis is highly variable ranging from no symptoms to cardiogenic shock. Despite considerable progress, it remains a challenge for frontline physicians to discriminate between acute myocarditis and myocardial infarction, especially in the early phase. Our case serves as a reminder that acute presentation of myocarditis could resemble ST elevation myocardial infarction potentially misdirecting the therapeutic decision. The clinical presentation, electrocardiographic and laboratory findings of the patient are not specific enough to distinguish acute myocarditis from myocardial infarction. The gold standard tests such coronary angiography and cardiovascular magnetic resonance (CMR) can reliably differentiate the two entities.
  6. Lee SK, Tan KW, Ng SW, Ooi KK, Ang KP, Abdah MA
    PMID: 24231745 DOI: 10.1016/j.saa.2013.10.084
    A cationic Schiff base ligand, TSB (L) and its Zn (II) complex (1) were synthesized and characterized by using CHN, (1)H-NMR, FT-IR, UV, LC-MS, and X-ray methods. Their ability to inhibit topoisomerase I, DNA cleavage activities, and cytotoxicity were studied. X-ray diffraction study shows that the mononuclear complex 1 is four coordinated with distorted tetrahedral geometry. The singly deprotonated Schiff base ligand L acts as a bidentate ON-donor ligand. Complexation of L increases the inhibitory strength on topoisomerase I activity. Complex 1 could fully inhibit topoisomerase I activity at 250 μM, while L did not show any inhibitory effect on topoisomerase I activity. In addition, L and complex 1 could cleave pBR322 DNA in a concentration and time dependent profile. Surprisingly, L has better DNA cleavage activity than complex 1. The cleavage of DNA by complex 1 is altered in the presence of hydrogen peroxide. Furthermore, L and complex 1 are mildly cytotoxic towards human ovarian cancer A2780 and hepatocellular carcinoma HepG2.
  7. Ang KP, Nordin RB, Lee SCY, Lee CY, Lu HT
    Med J Malaysia, 2019 02;74(1):51-56.
    PMID: 30846663
    INTRODUCTION: We aim to study the diagnostic value of electrocardiogram (ECG) in cardiac tamponade.

    METHODS: This study was a single centre, retrospective casecontrol study. We recruited 42 patients diagnosed with cardiac tamponade of various aetiologies confirmed by transthoracic echocardiography and 100 controls between January 2011 and December 2015. The ECG criteria of cardiac tamponade we adopted was as follows: 1) Low QRS voltage in a) the limb leads alone, b) in the precordial leads alone or, c) in all leads, 2) PR segment depression, 3) Electrical alternans, and 4) Sinus tachycardia.

    RESULTS: Malignancy was the most common causes of cardiac tamponade, the two groups were of similar proportion of gender and ethnicity. We calculated the sensitivity (SN), specificity (SP), positive predictive value (PPV), and negative predictive value (NPV) of each ECG criteria. Among the ECG abnormalities, we noted the SN of 'low voltage in all chest leads' (69%), 'low voltage in all limb leads' (67%) and 'sinus tachycardia' (69%) were higher as compared to 'PR depression' (12%) and 'electrical alternan' (5%). On the other hand, 'low voltage in all chest leads' (98%), 'low voltage in all leads' (99%), 'PR depression' (100%) and 'electrical alternans' (100%) has highest SP.

    CONCLUSION: Our study reaffirmed the findings of previous studies that electrocardiography cannot be used as a screening tool for diagnosing cardiac tamponade due to its low sensitivity. However, with clinical correlation, electrocardiography is a valuable adjuvant test to 'rule in' cardiac tamponade because of its high specificity.

  8. Ren G, Hao X, Yang S, Chen J, Qiu G, Ang KP, et al.
    J Biochem Mol Toxicol, 2020 Sep;34(9):e22544.
    PMID: 32619082 DOI: 10.1002/jbt.22544
    Breast cancer is one of the leading causes of death in cancer categories, followed by lung, colorectal, and ovarian among the female gender across the world. 10H-3,6-diazaphenothiazine (PTZ) is a thiazine derivative compound that exhibits many pharmacological activities. Herein, we proceed to investigate the pharmacological activities of PTZ toward breast cancer MCF-7 cells as a representative in vitro breast cancer cell model. The PTZ exhibited a proliferation inhibition (IC50  = 0.895 µM) toward MCF-7 cells. Further, cell cycle analysis illustrated that the S-phase checkpoint was activated to achieve proliferation inhibition. In vitro cytotoxicity test on three normal cell lines (HEK293 normal kidney cells, MCF-10A normal breast cells, and H9C2 normal heart cells) demonstrated that PTZ was more potent toward cancer cells. Increase in the levels of reactive oxygen species results in polarization of mitochondrial membrane potential (ΔΨm), together with suppression of mitochondrial thioredoxin reductase enzymatic activity suggested that PTZ induced oxidative damages toward mitochondria and contributed to improved drug efficacy toward treatment. The RT2 PCR Profiler Array (human apoptosis pathways) proved that PTZ induced cell death via mitochondria-dependent and cell death receptor-dependent pathways, through a series of modulation of caspases, and the respective morphology of apoptosis was observed. Mechanistic studies of apoptosis suggested that PTZ inhibited AKT1 pathways resulting in enhanced drug efficacy despite it preventing invasion of cancer cells. These results showed the effectiveness of PTZ in initiation of apoptosis, programmed cell death, toward highly chemoresistant MCF-7 cells, thus suggesting its potential as a chemotherapeutic drug.
  9. Ahmad Z, Ng CT, Fong LY, Bakar NA, Hussain NH, Ang KP, et al.
    J Physiol Sci, 2016 May;66(3):213-20.
    PMID: 26732386 DOI: 10.1007/s12576-015-0410-7
    Endothelial dysfunction has been implicated in the pathogenesis of atherosclerosis. Salvia miltiorrhiza (danshen) is a traditional Chinese medicine that has been effectively used to treat cardiovascular disease. Cryptotanshinone (CTS), a major lipophilic compound isolated from S. miltiorrhiza, has been reported to possess cardioprotective effects. However, the anti-atherogenic effects of CTS, particularly on tumor necrosis factor-α (TNF-α)-induced endothelial cell activation, are still unclear. This study aimed to determine the effect of CTS on TNF-α-induced increased endothelial permeability, monocyte adhesion, soluble intercellular adhesion molecule 1 (sICAM-1), soluble vascular cell adhesion molecule 1 (sVCAM-1), monocyte chemoattractant protein 1 (MCP-1) and impaired nitric oxide production in human umbilical vein endothelial cells (HUVECs), all of which are early events occurring in atherogenesis. We showed that CTS significantly suppressed TNF-α-induced increased endothelial permeability, monocyte adhesion, sICAM-1, sVCAM-1 and MCP-1, and restored nitric oxide production. These observations suggest that CTS possesses anti-inflammatory properties and could be a promising treatment for the prevention of cytokine-induced early atherogenesis.
  10. Ooi KK, Yeo CI, Mahandaran T, Ang KP, Akim AM, Cheah YK, et al.
    J Inorg Biochem, 2017 01;166:173-181.
    PMID: 27865929 DOI: 10.1016/j.jinorgbio.2016.11.008
    Phosphanegold(I) thiolates, Ph3PAu[SC(OR)=NPh], R=Me (1), Et (2) and iPr (3), were previously shown to be significantly cytotoxic toward HT-29 cancer cells and to induce cell death by both intrinsic and extrinsic apoptotic pathways whereby 1 activated the p73 gene, and each of 2 and 3 activated p53; 2 also caused apoptotic cell death via the c-Jun N-terminal kinase/mitogen-activated protein kinase pathway. Apoptosis pathways have been further evaluated by mitochondrial cytochrome c measurements and annexin V screening, confirming apoptotic pathways of cell death. Cell cycle analysis showed the majority of treated HT-29 cells were arrested at the G2/M checkpoint after 24h; results of both assays were confirmed by changes in populations of relevant genes (PCR array analysis). Cell invasion studies showed inhibition of metastasis through Matrigel™ matrix to 17-22% cf. untreated cells. LC50values were determined in zebrafish (8.36, 8.17, and 7.64μM for 1-3). Finally, the zebrafish tolerated doses of 1 and 2 up to 0.625μM, and 3 was tolerated at even higher doses of up to 1.25μM.
  11. Tan YS, Ooi KK, Ang KP, Akim AM, Cheah YK, Halim SN, et al.
    J Inorg Biochem, 2015 Sep;150:48-62.
    PMID: 26086852 DOI: 10.1016/j.jinorgbio.2015.06.009
    In the solid state each of three binuclear zinc dithiocarbamates bearing hydroxyethyl groups, {Zn[S2CN(R)CH2CH2OH]2}2 for R = iPr (1), CH2CH2OH (2), and Me (3), and an all alkyl species, [Zn(S2CNEt2)2]2 (4), features a centrosymmetric {ZnSCS}2 core with a step topology; both 1 and 3 were isolated as monohydrates. All compounds were broadly cytotoxic, specifically against human cancer cell lines compared with normal cells, with greater potency than cisplatin. Notably, some selectivity were indicated with 2 being the most potent against human ovarian carcinoma cells (cisA2780), and 4 being more cytotoxic toward multidrug resistant human breast carcinoma cells (MCF-7R), human colon adenocarcinoma cells (HT-29), and human lung adenocarcinoma epithelial cells (A549). Based on human apoptosis PCR-array analysis, caspase activities, DNA fragmentation, cell apoptotic assays, intracellular reactive oxygen species (ROS) measurements and human topoisomerase I inhibition, induction of apoptosis in HT-29 cells is demonstrated via both extrinsic and intrinsic pathways. Compounds 2-4 activate the p53 gene while 1 activates both p53 and p73. Cell cycle arrest at the S and G2/M phases correlates with inhibition of HT-29 cell growth. Cell invasion is also inhibited by 1-4 which is correlated with down-regulation of NF-κB.
  12. Ooi KK, Yeo CI, Ang KP, Akim AM, Cheah YK, Halim SN, et al.
    J Biol Inorg Chem, 2015 Jul;20(5):855-73.
    PMID: 26003312 DOI: 10.1007/s00775-015-1271-5
    The phosphanegold(I) carbonimidothioates, Ph3PAu{SC(OR)=NC6H4Me-4} for R = Me (1), Et (2) and iPr (3), feature linear P-Au-S coordination geometries and exhibit potent in vitro cytotoxicity against HT-29 colon cancer cells in both monolayer and multi-cellular spheroid models (e.g., IC50 = 11.9 ± 0.4 and 20.3 ± 0.3 μM for 2, respectively). Both intrinsic and extrinsic pathways of apoptosis are demonstrated by human apoptosis PCR array analysis, caspase activities, DNA fragmentation and cell apoptotic assays. Compounds 1-3 induce an extrinsic pathway that leads to down-regulation of NFκB. Compound 2 also exhibits an extrinsic apoptotic pathway involving the activation of both p53 and p73, whereas 3 activates p53 only. Lys48- and Lys63-linked polyubiquitination are also promoted by 1-3. Each of cytotoxic Ph3PAu{SC(OR)=NC6H4Me-4}, for R = Me (1), Et (2) and iPr (3), induce an intrinsic apoptotic pathway as well as an extrinsic pathway leading to down-regulation of NFκB. Lys48- and Lys63-linked polyubiquitination are promoted by 1-3 and these are able to inhibit cell invasion and to suppress the activity of TrxR.
  13. Wang Y, Gao F, Ooi KK, Tai Q, Zhang J, Zhu Y, et al.
    J Environ Pathol Toxicol Oncol, 2019;38(4):297-311.
    PMID: 32464002 DOI: 10.1615/JEnvironPatholToxicolOncol.2019030482
    Early development of liver cancer is usually asymptomatic. The overall survival rate of patients is relatively low due to late diagnosis, despite hepatocellular carcinoma being a common diagnosis. The high mortality rate of liver cancer was due to its overactivated cellular mitochondrial activities, namely thioredoxin reductase enzymatic activities and its downstream activation of nuclear factor kappa B (NF-κB) signaling pathways for cancer cell migration. Our previous study on this candidate compound on A2780 ovarian cancer cells and MCF-7 breast cancer cells, through modulation of cell-cycle checkpoints and respective targeted apoptosis pathways. The current study used HepG2 hepatocellular carcinoma cell lines as a representative in vitro liver cancer cell model. The half maximal inhibitory concentration (IC50) value was obtained via incubation of PTZ compound for 24 h yield of 37.03 μM, whereby it was three-fold more potent than the standard control tested, cisplatin (109.23 μM). The subsequent application of IC50 dosage of PTZ onto HepG2 cells illustrated a growth-static effect via activation of S-phase cell-cycle checkpoints, immediately followed by regulation of apoptosis. Increased cellular concentration of reactive oxygen species eventually generated oxidative damages on mitochondria, hence resulting in the release of cytochrome c protein and suppression of TrxR enzymatic activity, in conjunction with the suppression on invasion of cancer cells via Matrigel invasion chamber. In conclusion, PTZ was hypothesized to act effectively on mitochondria of HepG2 cells; hence it should proceed into detailed drug targeting mechanism research.
  14. Ang KP, Tan HK, Selvaraja M, Kadir AA, Somchit MN, Akim AM, et al.
    Planta Med, 2011 Nov;77(16):1782-7.
    PMID: 21614753 DOI: 10.1055/s-0030-1271119
    Development of early stage atherosclerosis involves the activation of endothelial cells by oxidized low-density lipoprotein (oxLDL) with subsequent increases in endothelial permeability and expression of adhesion molecules favoring the adherence of monocytes to the endothelium. Cryptotanshinone (CTS), a major compound derived from the Chinese herb Salvia miltiorrhiza, is known for its protective effects against cardiovascular diseases. The aim of this study was to determine whether CTS could prevent the oxLDL-induced early atherosclerotic events. OxLDL (100 µg/mL) was used to increase endothelial permeability and induce monocyte-endothelial cell adhesion in human umbilical vein endothelial cells (HUVECs). Endothelial nitric oxide (NO) concentrations, a permeability-regulating molecule, and expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were measured. Results show that a) endothelial hyperpermeability was suppressed by 94 % (p 
  15. Zhang J, Ming C, Zhang W, Okechukwu PN, Morak-Młodawska B, Pluta K, et al.
    Drug Des Devel Ther, 2017;11:3045-3063.
    PMID: 29123378 DOI: 10.2147/DDDT.S144415
    The asymptomatic properties and high treatment resistance of ovarian cancer result in poor treatment outcomes and high mortality rates. Although the fundamental chemotherapy provides promising anticancer activities, it is associated with severe side effects. The derivative of phenothiazine, namely, 10H-3,6-diazaphenothiazine (PTZ), was synthesized and reported with ideal anticancer effects in a previous paper. In this study, detailed anticancer properties of PTZ was examined on A2780 ovarian cancer cells by investigating the cytotoxicity profiles, mechanism of apoptosis, and cell invasion. Research outcomes revealed PTZ-induced dose-dependent inhibition on A2780 cancer cells (IC50 =0.62 µM), with significant less cytotoxicity toward HEK293 normal kidney cells and H9C2 normal heart cells. Generation of reactive oxygen species (ROS) and polarization of mitochondrial membrane potential (ΔΨm) suggests PTZ-induced cell death through oxidative damage. The RT2 Profiler PCR Array on apoptosis pathway demonstrated PTZ-induced apoptosis via intrinsic (mitochondria-dependent) and extrinsic (cell death receptor-dependent) pathway. Inhibition of NF-κB and subsequent inhibition of (BIRC6-XIAP) complex activities reduced the invasion rate of A2780 cancer cells penetrating through the Matrigel™ Invasion Chamber. Lastly, the cell cycle analysis hypothesizes that the compound is cytostatic and significantly arrests cell proliferation at G2/M phase. Hence, the exploration of the underlying anticancer mechanism of PTZ suggested its usage as promising chemotherapeutic agent.
  16. Jamaludin NS, Goh ZJ, Cheah YK, Ang KP, Sim JH, Khoo CH, et al.
    Eur J Med Chem, 2013 Sep;67:127-41.
    PMID: 23856069 DOI: 10.1016/j.ejmech.2013.06.038
    The synthesis and characterisation of R3PAu[S2CN((i)Pr)CH2CH2OH], for R = Ph (1), Cy (2) and Et (3)4, is reported. Compounds 1-3 are cytotoxic against the doxorubicin-resistant breast cancer cell line, MCF-7R, with 1 exhibiting greater potency and cytotoxicity than either of doxorubicin and cisplatin. Based on human apoptosis PCR-array analysis, caspase activities, DNA fragmentation, cell apoptotic assays, intracellular reactive oxygen species (ROS) measurements and human topoisomerase I inhibition, induction of apoptosis by 1, and necrosis by 2 and 3, are demonstrated, by both extrinsic and intrinsic pathways. Compound 1 activates the p53 gene, 2 activates only the p73 gene, whereas 3 activates both the p53 and p73 genes. Compounds 1 and 3 activate NF-κB, and each inhibits topoisomerase I.
  17. Ishak DH, Ooi KK, Ang KP, Akim AM, Cheah YK, Nordin N, et al.
    J Inorg Biochem, 2014 Jan;130:38-51.
    PMID: 24176918 DOI: 10.1016/j.jinorgbio.2013.09.018
    The compound with R=CH2CH3 in Bi(S2CNR2)3 (1) is highly cytotoxic against a range of human carcinoma, whereas that with R=CH2CH2OH (2) is considerably less so. Both 1 and 2 induce apoptosis in HepG2 cells with some evidence for necrosis induced by 2. Based on DNA fragmentation, caspase activities and human apoptosis PCR-array analysis, both the extrinsic and intrinsic pathways of apoptosis have been shown to occur. While both compounds activate mitochondrial and FAS apoptotic pathways, compound 1 was also found to induce another death receptor-dependent pathway by induction of CD40, CD40L and TNF-R1 (p55). Further, 1 highly expressed DAPK1, a tumour suppressor, with concomitant down-regulation of XIAP and NF-κB. Cell cycle arrest at the S and G2/M phases correlates with the inhibition of the growth of HepG2 cells. The cell invasion rate of 2 is 10-fold higher than that of 1, a finding correlated with the down-regulation of survivin and XIAP expression by 1. Compounds 1 and 2 interact with DNA through different binding motifs with 1 interacting with AT- or TA-specific sites followed by inhibition of restriction enzyme digestion; 2 did not interfere with any of the studied restriction enzymes.
  18. Yeo CI, Ooi KK, Akim AM, Ang KP, Fairuz ZA, Halim SN, et al.
    J Inorg Biochem, 2013 Oct;127:24-38.
    PMID: 23850666 DOI: 10.1016/j.jinorgbio.2013.05.011
    The Ph3PAu[SC(OR)=NPh], R=Me (1), Et (2) and iPr (3), compounds are significantly cytotoxic to the HT-29 cancer cell line with 1 being the most active. Based on human apoptosis PCR-array analysis, caspase activities, DNA fragmentation, cell apoptotic assays, intracellular reactive oxygen species (ROS) measurements and human topoisomerase I inhibition, induction of apoptosis is demonstrated and both the extrinsic and intrinsic pathways of apoptosis have been shown to occur. Compound 1 activates the p73 gene, whereas each of 2 and 3 activates the p53 gene. An additional apoptotic mechanism is exhibited by 2, that is, via the JNK/MAP pathway.
  19. Cui YC, Qiu YS, Wu Q, Bu G, Peli A, Teh SW, et al.
    Exp Biol Med (Maywood), 2021 May;246(10):1177-1183.
    PMID: 33535809 DOI: 10.1177/1535370220985468
    Osteoblasts play an important role in bone regeneration and repair. The hypoxia condition in bone occurs when bone undergoes fracture, and this will trigger a series of biochemical and mechanical changes to enable bone repair. Hence, it is interesting to observe the metabolites and metabolism changes when osteoblasts are exposed to hypoxic condition. This study has looked into the response of human osteoblast hFOB 1.19 under normoxic and hypoxic conditions by observing the cell growth and utilization of metabolites via Phenotype MicroArrays™ under these two different oxygen concentrations. The cell growth of hFOB 1.19 under hypoxic condition showed better growth compared to hFOB 1.19 under normal condition. In this study, osteoblast used glycolysis as the main pathway to produce energy as hFOB 1.19 in both hypoxic and normoxic conditions showed cell growth in well containing dextrin, glycogen, maltotriose, D-maltose, D-glucose-6-phospate, D-glucose, D-mannose, D-Turanose, D-fructose-6-phosphate, D-galactose, uridine, adenosine, inosine and α-keto-glutaric acid. In hypoxia, the cells have utilized additional metabolites such as α-D-glucose-1-phosphate and D-fructose, indicating possible activation of glycogen synthesis and glycogenolysis to metabolize α-D-glucose-1-phosphate. Meanwhile, during normoxia, D-L-α-glycerol phosphate was used, and this implies that the osteoblast may use glycerol-3-phosphate shuttle and oxidative phosphorylation to metabolize glycerol-3-phosphate.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links