Displaying all 14 publications

Abstract:
Sort:
  1. Ang WL, Mohammad AW, Johnson D, Hilal N
    Sci Total Environ, 2020 Mar 01;706:136047.
    PMID: 31864996 DOI: 10.1016/j.scitotenv.2019.136047
    Study of forward osmosis (FO) has been increasing steadily over recent years with applications mainly focusing on desalination and wastewater treatment processes. The working mechanism of FO lies in the natural movement of water between two streams with different osmotic pressure, which makes it useful in concentrating or diluting solutions. FO has rarely been operated as a stand-alone process. Instead, FO processes often appear in a hybrid or integrated form where FO is combined with other treatment technologies to achieve better overall process performance and cost savings. This article aims to provide a comprehensive review on the need for hybridization/integration for FO membrane processes, with emphasis given to process enhancement, draw solution regeneration, and pretreatment for FO fouling mitigation. In general, integrated/hybrid FO processes can reduce the membrane fouling propensity; prepare the solution suitable for subsequent value-added uses and production of renewable energy; lower the costs associated with energy consumption; enhance the quality of treated water; and enable the continuous operation of FO through the regeneration of draw solution. The future potential of FO lies in the success of how it can be hybridized or integrated with other technologies to minimize its own shortcomings, while enhancing the overall performance.
  2. Hui KC, Ang WL, Yahya WZN, Sambudi NS
    Chemosphere, 2022 Mar;290:133377.
    PMID: 34952025 DOI: 10.1016/j.chemosphere.2021.133377
    The present work demonstrates the coupling of titanium dioxide, TiO2 nanoparticles (TNP) with N-doped, Bi-doped, and N-Bi co-doped rice husk-derived carbon dots (CDs) via a facile dispersion method, forming respective photocatalyst composites of CDs/TNP, N-CDs/TNP, Bi-CDs/TNP and N-Bi-CDs/TNP. Characterization analyzes verified the successful incorporation of respective CDs samples into TNP, forming photocatalyst composite with narrowed band gap and quenched photoluminescence intensity. Photocatalytic activity of TNP and the respective composites was investigated for photodegradation of diclofenac (DCF) under both simulated sunlight and natural sunlight irradiation. The as-prepared N-Bi-CDs/TNP composite showed the best photocatalytic performance among all composites, able to completely degrade 5 ppm of DCF within 60 min and 180 min under both types of visible light irradiation, respectively. The N-Bi-CDs/TNP composite also showed a TOC removal efficiency up to 87.63%. N-Bi-CDs, worked as photosensitizer and electron reservoir, contributed to the outstanding photocatalytic activity of N-Bi-CDs/TNP, whereby the recombination was prolonged and light absorption was shifted towards the visible light region. Furthermore, the composite of N-Bi-CDs/TNP also demonstrated good stability and reusability over repeated degradation cycles. The photodegradation of DCF resulted into several intermediates, which were identified from LC-MS analysis. The present work could provide an insight on the application of heteroatoms doped and co-doped carbon dots in semiconductor oxide as high performance photocatalysts.
  3. Nouri A, Mahmoudi E, Ang WL, Panomsuwan G, Jongprateep O
    Environ Sci Pollut Res Int, 2023 Sep;30(44):98817-98831.
    PMID: 35840833 DOI: 10.1007/s11356-022-21996-z
    Sugar molasses from agricultural waste could be a sustainable carbon source for the synthesis of graphene adsorbent introduced in this work. The sugar molasses was successfully converted to graphene-like material and subsequently coated on the sand as graphene sand composite (GSC), as proven by XRD, XPS, Raman spectroscopy, and SEM with EDX mapping analyses. The adsorption performance of GSC was evaluated against the removal of Tetracycline (TC) and methylene blue (MB) pollutants from an aqueous solution in a fixed bed column continuous-flow adsorption setup. The effect of different process conditions: bed height (4-12 cm), influent flow rate (3-7 mL/min), and contaminants' concentration (50-150 ppm) was investigated. The results revealed that column performance was improved by increasing the bed depth and lowering the flow rate and concentration of the pollutants. The best removal efficiency was obtained when the bed height was 12 cm, the influent flow rate of 3 mL/min, and the pollutants' initial concentration was 50 mg/L. Thomas, Adams-Bohart, and Yoon-Nelson models were attempted to fit the breakthrough curves. Regeneration of the GSC indicated the decline of breakthrough time from 240-280 to 180 min, reflecting the decrease in adsorptive sites due to the incomplete regeneration process. Overall, sugar molasses was shown to be a low-cost precursor for synthesizing valuable graphene material in the form of GSC, which can reduce the problem for industrial waste management of sugar molasses, and the GSC could be used as an adsorbent for environmental application.
  4. Mahmoudi E, Azizkhani S, Mohammad AW, Ng LY, Benamor A, Ang WL, et al.
    J Environ Sci (China), 2020 Dec;98:151-160.
    PMID: 33097147 DOI: 10.1016/j.jes.2020.05.013
    Graphene oxide is a very high capacity adsorbent due to its functional groups and π-π interactions with other compounds. Adsorption capacity of graphene oxide, however, can be further enhanced by having synergistic effects through the use of mixed-matrix composite. In this study, silica-decorated graphene oxide (SGO) was used as a high-efficiency adsorbent to remove Congo red (CR) and Cadmium (II) from aqueous solutions. The effects of solution initial concentration (20 to 120 mg/l), solution pH (pH 2 to 7), adsorption duration (0 to 140 min) and temperature (298 to 323 K) were measured in order to optimize the adsorption conditions using the SGO adsorbent. Morphological analysis indicated that the silica nanoparticles could be dispersed uniformly on the graphene oxide surfaces. The maximum capacities of adsorbent for effective removal of Cd (II) and CR were 43.45 and 333.33 mg/g based on Freundlich and Langmuir isotherms, respectively. Langmuir and Freundlich isotherms displayed the highest values of Qmax for CR and Cd (II) adsorption in this study, which indicated monolayer adsorption of CR and multilayer adsorption of Cd (II) onto the SGO, respectively. Thermodynamic study showed that the enthalpy (ΔH) and Gibbs free energy(ΔG) values of the adsorption process for both pollutants were negative, suggesting that the process was spontaneous and exothermic in nature. This study showed active sites of SGO (π-π, hydroxyl, carboxyl, ketone, silane-based functional groups) contributed to an enormous enhancement in simultaneous removal of CR and Cd (II) from an aqueous solution, Therefore, SGO can be considered as a promising adsorbent for future water pollution control and removal of hazardous materials from aqueous solutions.
  5. Abdul Wahid R, Ang WL, Mohammad AW, Johnson DJ, Hilal N
    Membranes (Basel), 2021 Jul 28;11(8).
    PMID: 34436329 DOI: 10.3390/membranes11080566
    Fertilizer-drawn forward osmosis (FDFO) is a potential alternative to recover and reuse water and nutrients from agricultural wastewater, such as palm oil mill effluent that consists of 95% water and is rich in nutrients. This study investigated the potential of commercial fertilizers as draw solution (DS) in FDFO to treat anaerobic palm oil mill effluent (An-POME). The process parameters affecting FO were studied and optimized, which were then applied to fertilizer selection based on FO performance and fouling propensity. Six commonly used fertilizers were screened and assessed in terms of pure water flux (Jw) and reverse salt flux (JS). Ammonium sulfate ((NH4)2SO4), mono-ammonium phosphate (MAP), and potassium chloride (KCl) were further evaluated with An-POME. MAP showed the best performance against An-POME, with a high average water flux, low flux decline, the highest performance ratio (PR), and highest water recovery of 5.9% for a 4-h operation. In a 24-h fouling run, the average flux decline and water recovered were 84% and 15%, respectively. Both hydraulic flushing and osmotic backwashing cleaning were able to effectively restore the water flux. The results demonstrated that FDFO using commercial fertilizers has the potential for the treatment of An-POME for water recovery. Nevertheless, further investigation is needed to address challenges such as JS and the dilution factor of DS for direct use of fertigation.
  6. Mahmoudi E, Ang WL, Ng CY, Ng LY, Mohammad AW, Benamor A
    J Colloid Interface Sci, 2019 Apr 15;542:429-440.
    PMID: 30771638 DOI: 10.1016/j.jcis.2019.02.023
    Graphene oxide (GO) has gained popularity in scientific research and industry due to its superior properties, which can be controlled by the synthesis method and graphite feedstock. Despite the availability of different graphite sources, most of the reported studies used natural graphite flake (NGF) as a source of oxidation for GO synthesis. The effect of various alternative graphite feedstocks on the GO properties has not been investigated systematically. This study investigated the influence of graphite feedstock (natural and synthetic) on the characteristics and properties of GO via modified Hummer's method. Natural graphite flake (NGF), natural graphite powder (NGP), and synthetic graphite powder (SGP) were used as graphite feedstock in the study. Energy-dispersive X-ray analysis revealed that the GO produced using NGP (NGP-GO) has higher oxygen to carbon ratio in comparison to GO made from NGF (NGF-GO) and GO made from SGP (SGP-GO) (35.4, 32.7, and 32.2%, respectively), indicating higher oxidation degree for NGP-GO. Zeta potential analysis for NGP-GO, NGF-GO and SGP-GO were -47.8, -42.6 and -39.4 mV, respectively. Morphological analysis revealed that the structures of GO varied according to graphite feedstock, in which (NGP-GO) and (NGF-GO) were highly exfoliated (single-layered structure) while (SGP-GO) showed a multi-layered structure. Further testing was conducted by decorating silver (Ag) nanoparticles on the GO. The results showed that Ag could be uniformly decorated (no agglomeration) on the surface of GO-NGP, due to the presence of more functional groups. Subsequently, the antimicrobial property of Ag-NGP was the highest with an inhibition diameter of 14.7 ± 1.2 mm (30% higher than the other samples). In conclusion, the properties of GO can be tuned by selecting the suitable graphite feedstock and this might pave the way to new developments in the GO-based applications.
  7. Mahmoudi E, Ng LY, Ang WL, Chung YT, Rohani R, Mohammad AW
    Sci Rep, 2019 02 04;9(1):1216.
    PMID: 30718690 DOI: 10.1038/s41598-018-38060-x
    Nanomaterials can be incorporated in the synthesis of membrane to obtain mixed-matrix membrane with marked improvement in properties and performance. However, stability and dispersion of the nanomaterials in the membrane matrix, as well as the need to use high ratio of nanomaterials for obvious improvement of membrane properties, remain a major hurdle for commercialization. Hence, this study aims to investigate the improvement of polyamide 6,6 membrane properties with the incorporation of silver nanoparticles decorated on graphene oxide (Ag-GO) nanoplates and at the same time focus is given to the issues above. Graphene oxide nanoplates were synthesized using the modified Hummers' method and decorated with silver before embedded into the polyamide 6,6 matrix. Physicochemical characterizations were conducted on both nanoplates and the mixed-matrix Ag-GO polyamide 6,6 membrane. The issues of Ag agglomeration and leaching were not observed, which could be attributed to the decoration of Ag on GO that helped to disperse the nanomaterials and provided a better anchor point for the attachment of Ag nanoparticles. The synthesized membrane showed marked improvement regarding flux (135% increment) and antifouling (40% lower irreversible fouling), which could be ascribed to the more negative charge of membrane surface (-14 ± 6 to -31 ± 3.8 mV) and hydrophilicity (46% enhancement) of the membranes. With minimal embedment of Ag nanoparticles, the membrane showed superior antibacterial property where the E. coli bacteria could not form a single colony on the membrane surface. Overall, the decoration of Ag on GO nanoplates could be a promising approach to resolve the agglomeration and leaching issues as well as reduce the amount of precious Ag in the synthesis of Ag-GO polyamide 6,6 membrane.
  8. Khoshnam M, Farahbakhsh J, Zargar M, Mohammad AW, Benamor A, Ang WL, et al.
    Sci Rep, 2021 Oct 13;11(1):20378.
    PMID: 34645890 DOI: 10.1038/s41598-021-99849-x
    In this study, hematite graphene oxide (αFe2O3-GO) powder nanocomposites and thin-film hematite graphene oxide (αFe2O3-GO) were synthesized for application in the removal of Rhodamine B (RhB) from textile wastewater. αFe2O3-GO nanomaterials were placed onto the FTO substrate to form a thin layer of nanocomposites. Different analysis including XRD, FTIR, Raman spectra, XPS, and FESEM were done to analyze the morphology, structure, and properties of the synthesized composites as well as the chemical interactions of αFe2O3 with GO. The photocatalytic performance of two synthesized composites was compared with different concentrations of αFe2O3-GO. The results showed that powder nanocomposites are more effective than thin-film composites for the removal of RhB dye. αFe2O3-GO-5% powder nanocomposites removed over 64% of dye while thin-film nanocomposites had less removal efficiencies with just under 47% removal rate. The reusability test was done for both materials in which αFe2O3-GO-5% powder nanocomposites removed a higher rate of dye (up to 63%) in more cycles (6 cycles).
  9. Abdullah Sani NS, Ang WL, Mohammad AW, Nouri A, Mahmoudi E
    Sci Rep, 2023 Feb 02;13(1):1931.
    PMID: 36732605 DOI: 10.1038/s41598-023-27477-8
    Waste cooking oil (WCO) appears to be a potential carbonaceous source for synthesizing graphene sand composite (GSC) adsorbent in removing pollutants. This study presents a green synthesis method of GSC using WCO as a sustainable carbon source for the synthesis of GSC through the thermal graphitization method. Characterization analysis conducted on GSCWCO verified the successful coating of WCO onto the sand surface and conversion to graphene, which possessed distinct functional groups and features of graphene materials. GSCWCO adsorbent effectiveness in removing Congo Red dye through batch adsorption was studied under the influence of different initial concentrations (20 to 100 mg/L), and the optimum pH (pH 2 to 10), contact time (5 to 240 min), and temperature (25 to 45 °C) were investigated. The GSCWCO showed removal rates of 91.5% achieved at an initial dye concentration of 20 mg L-1, 1.0 g of adsorbent dosage, a temperature of 25 °C, and 150 min of contact time. The GSCWCO exhibited a maximum capacity of 5.52 mg g-1, was well-fitted to the Freundlich isotherm model with an R2 value of 0.989 and had an adsorption mechanism that followed the pseudo-second-order kinetic model. Negative values of enthalpy (ΔH) and Gibbs free energy (ΔG) revealed that CR adsorption onto GSCWCO was a spontaneous and exothermic process. The presence of functional groups on the surface of GSCWCO with such interactions (π-π attractive forces, hydrophobic forces, and hydrogen bonding) was responsible for the anionic dye removal. Regeneration of GSCWCO adsorbent declined after four cycles, possibly due to the chemisorption of dyes with GSC that resulted in inefficient adsorption. Being a waste-to-wealth product, GSCWCO possessed great potential to be used for water treatment and simultaneously benefited the environment through the effort to reduce the excessive discharge of WCO.
  10. Nouri A, Ang WL, Mahmoudi E, Chua SF, Mohammad AW, Benamor A, et al.
    Chemosphere, 2023 May;322:138219.
    PMID: 36828108 DOI: 10.1016/j.chemosphere.2023.138219
    Decorating nanomaterials on graphene oxide (GO) can enhance its adsorption capacity and removal efficiency of water pollutants. In this study, for the first time, nano-sized polylactic acid (PLA) has been successfully decorated on the surface of GO through a facile synthesis approach. The adsorptive efficiency of GO-PLA for removing methylene blue (MB) and tetracycline (TC) from an aqueous solution was examined. The characterization confirmed the successful decoration of PLA on GO nanosheets with the nano size of PLA. It was hypothesized that the PLA was decorated on the surface of GO through covalent bonding between oxygen-containing functional groups and lactide molecules. The optimum adsorption parameters determined were at the adsorbent dose of 0.5 g L-1, pH 4, contact time of 120 min, and temperature of 318 K. The pseudo-second-order kinetic model described the contaminants' adsorption behaviour, and the intraparticle diffusion model revealed that both surface adsorption and intraparticle diffusion controlled the adsorption process. Langmuir isotherm model best described the adsorption behaviour of the pollutants on GO-PLA and demonstrated the maximum monolayer uptake capacities of MB (332.5 mg g-1) and TC (223.7 mg g-1). The adsorption results indicated that the uptake capacities of GO-PLA in comparison to GO have increased by approximately 70% and 110% for MB and TC, respectively. These observations reflect the remarkable role of nano-sized PLA that enhanced the adsorption capacity due to its additional functional group and larger surface area.
  11. Ang WL, Boon Mee CAL, Sambudi NS, Mohammad AW, Leo CP, Mahmoudi E, et al.
    Sci Rep, 2020 Dec 03;10(1):21199.
    PMID: 33273663 DOI: 10.1038/s41598-020-78322-1
    In the present work, palm kernel shell (PKS) biomass waste has been used as a low-cost and easily available precursor to prepare carbon dots (CDs) via microwave irradiation method. The impacts of the reacting medium: water and diethylene glycol (DEG), and irradiation period, as well as the presence of chitosan on the CDs properties, have been investigated. The synthesized CDs were characterized by several physical and optical analyses. The performance of the CDs in terms of bacteria cell imaging and copper (II) ions sensing and removal were also explored. All the CDs possessed a size of 6-7 nm in diameter and the presence of hydroxyl and alkene functional groups indicated the successful transformation of PKS into CDs with carbon core consisting of C = C elementary unit. The highest quantum yield (44.0%) obtained was from the CDs synthesised with DEG as the reacting medium at irradiation period of 1 min. It was postulated that the high boiling point of DEG resulted in a complete carbonisation of PKS into CDs. Subsequently, the absorbance intensity and photoluminescence intensity were also much higher compared to other precursor formulation. All the CDs fluoresced in the bacteria culture, and fluorescence quenching occurred in the presence of heavy metal ions. These showed the potential of CDs synthesised from PKS could be used for cellular imaging and detection as well as removal of heavy metal ions.
  12. Me MFH, Ang WL, Othman AR, Mohammad AW, Nasharuddin AAA, Aris AM, et al.
    Environ Monit Assess, 2024 Mar 14;196(4):366.
    PMID: 38483639 DOI: 10.1007/s10661-024-12526-0
    Bioelectrochemical sensors for environment monitoring have the potential to provide facility operators with real-time data, allowing for better and more timely decision-making regarding water and wastewater treatment. To assess the robustness and sensitivity of the Sentry™ biosensor in local conditions, it was tested in Malaysia using domestically available wastewater. The study objectives included (1) enrich the biosensor locally, (2) operate and test the biosensor with local domestic wastewater, and (3) determine the biosensor's responsiveness to model pollutants through pollutant spike and immersion test as well as response to absence of wastewater. Lab-scale operation shows the biosensor was successfully enriched with (1) local University Kebangsaan Malaysia's, microbial community strain collection and (2) local municipal wastewater microflora, operated for more than 50 days with a stable yet responsive carbon consumption rate (CCR) signal. Meanwhile, two independent biosensors were also enriched and operated in Indah Water Research Centre's crude sewage holding tank, showing a stable response to the wastewater. Next, a pilot scale setup was constructed to test the enriched biosensors for the spiked-pollutant test. The biosensors showed a proportional CCR response (pollutant presence detected) towards several organic compounds in the sewage, including ethanol, chicken blood, and dilution of tested sewage but less to curry powder, methanol, and isopropanol. Conversely, there was no significant response (pollutant presence not detected) towards hexane, Congo red, engine oil, and paint, which may be due to their non-biodegradability and/or insoluble nature. Additionally, the biosensors were exposed to air for 6 h to assess their robustness towards aerobic shock with a positive result. Overall, the study suggested that the biosensor could be a powerful monitoring tool, given its responsiveness towards organic compounds in sewage under normal conditions.
  13. Yeo RYZ, Chin BH, Hil Me MF, Chia JF, Pham HT, Othman AR, et al.
    ACS Biomater Sci Eng, 2023 Nov 13;9(11):6034-6044.
    PMID: 37846081 DOI: 10.1021/acsbiomaterials.3c00453
    Electrogenic microorganisms serve as important biocatalysts for microbial electrochemical sensors (MESes). The electrical signal produced is based on the rate of electron transfer between the microbes and electrodes, which represents the biotoxicity of water. However, existing MESes require complex and sophisticated fabrication methods. Here, several low-cost and rapid surface modification strategies (carbon powder-coated, flame-oxidized, and acid-bleached) have been demonstrated and studied for biosensing purposes. Surface-modified MESe bioanodes were successfully applied to detect multiple model pollutants including sodium acetate, ethanol, thinner, and palm oil mill effluent under three different testing sequences, namely, pollutant incremental, pollutant dumping, and water dilution tests. The carbon powder-coated bioanode showed the most responsive signal profile for all the three tests, which is in line with the average roughness values (Ra) when tested with atomic force microscopy. The carbon powder-coated electrode possessed a Ra value of 0.844, while flame-oxidized, acid-bleached, and control samples recorded 0.323, 0.336, and 0.264, respectively. The higher roughness was caused by the carbon coating and provided adhesive sites for microbial attachment and growth. The accuracy of MESe was also verified by correlating with chemical oxygen demand (COD) results. Similar to the sensitivity test, the carbon powder-coated bioanode obtained the highest R2 value of 0.9754 when correlated with COD results, indicating a high potential of replacing conventional water quality analysis methods. The reported work is of great significance to showcase facile surface modification techniques for MESes, which are cost-effective and sustainable while retaining the biocompatibility toward the microbial community with carbon-based coatings.
  14. Kumar R, Basu A, Bishayee B, Chatterjee RP, Behera M, Ang WL, et al.
    Environ Res, 2023 Jul 15;229:115881.
    PMID: 37084947 DOI: 10.1016/j.envres.2023.115881
    Tanning and other leather processing methods utilize a large amount of freshwater, dyes, chemicals, and salts and produce toxic waste, raising questions regarding their environmental sensitivity and eco-friendly nature. Total suspended solids, total dissolved solids, chemical oxygen demand, and ions such as chromium, sulfate, and chloride turn tannery wastewater exceedingly toxic for any living species. Therefore, it is imperative to treat tannery effluent, and existing plants must be examined and upgraded to keep up with recent technological developments. Different conventional techniques to treat tannery wastewater have been reported based on their pollutant removal efficiencies, advantages, and disadvantages. Research on photo-assisted catalyst-enhanced deterioration has inferred that both homogeneous and heterogeneous catalysis can be established as green initiatives, the latter being more efficient at degrading organic pollutants. However, the scientific community experiences significant problems developing a feasible treatment technique owing to the long degradation times and low removal efficiency. Hence, there is a chance for an improved solution to the problem of treating tannery wastewater through the development of a hybrid technology that uses flocculation as the primary treatment, a unique integrated photo-catalyst in a precision-designed reactor as the secondary method, and finally, membrane-based tertiary treatment to recover the spent catalyst and reclaimable water. This review gives an understanding of the progressive advancement of a cutting-edge membrane-based system for the management of tanning industrial waste effluents towards the reclamation of clean water. Adaptable routes toward sludge disposal and the reviews on techno-economic assessments have been shown in detail, strengthening the scale-up confidence for implementing such innovative hybrid systems.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links