Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Mousavi S, Ibrahim S, Aroua MK
    Bioresour Technol, 2012 Dec;125:256-66.
    PMID: 23026342 DOI: 10.1016/j.biortech.2012.08.075
    In this study, a twin-chamber upflow bio-electrochemical reactor packed with palm shell granular activated carbon as biocarrier and third electrode was used for sequential nitrification and denitrification of nitrogen-rich wastewater under different operating conditions. The experiments were performed at a constant pH value for the denitrification compartment. The effect of variables, namely, electric current (I) and hydraulic retention time (HRT), on the pH was considered in the nitrification chamber. The response surface methodology was used based on three levels to develop empirical models for the study on the effects of HRT and current values as independent operating variables on NH(4)(+)-N removal. The results showed that ammonium was reduced within the function of an extensive operational range of electric intensity (20-50 mA) and HRT (6-24h). The optimum condition for ammonium oxidation (90%) was determined with an I of 32 mA and HRT of 19.2h.
  2. Ghafari S, Hasan M, Aroua MK
    J Biosci Bioeng, 2009 Mar;107(3):275-80.
    PMID: 19269592 DOI: 10.1016/j.jbiosc.2008.11.008
    Accumulation of nitrite intermediate in autohydrogenotrophic denitrification process has been a challenging difficulty to tackle. This study showed that further growth of "true denitrifying" bacteria and adaptation to nitrite led to a faster reduction of nitrite than nitrate as a solution to circumvent nitrite accumulation. Moreover, two effective parameters namely pH and bicarbonate dose were optimized in order to achieve a better reduction rate. Sodium bicarbonate dose ranging from 20 to 2000 mg/L and pH in the range of 6.5-8.5 was selected to be examined employing 0.2 g MLVSS/L of reacclimatized denitrifying bacteria. Eleven runs of experiments were designed considering the interactive effect of these two operative parameters. A fairly close reduction time less than 4.5 h (>22.22 mg NO2(-)-N/g MLVSS/h) was gained for the pH range between 7 and 8. The highest specific nitrite reduction rate at 25 mg NO2(-)-N/g MLVSS/h was achieved applying 1000 mg NaHCO3/L at pH 7.5 and 8. The pH was found to be the leading parameter and bicarbonate as the less effective parameter on nitrite reduction removal. Central composite design (CCD) and response surface design (RSM) were employed to develop a model as well as define the optimum condition. Using the experimental data, the developed quadratic model predicted optimum condition at pH 7.8 and sodium bicarbonate dose 1070 mg/L upon which denitrifiers managed to accomplish reduction within 3.5 h and attained the specific degradation rate of 28.57 mg NO2(-)-N/g MLVSS/h.
  3. Ghafari S, Hasan M, Aroua MK
    Bioresour Technol, 2010 Apr;101(7):2236-42.
    PMID: 20015639 DOI: 10.1016/j.biortech.2009.11.068
    In this study the kinetics of autohydrogenotrophic denitrification was studied under optimum solution pH and bicarbonate concentration. The optimal pH and bicarbonate concentration were firstly obtained using a design of experiment (DOE) methodology. For this purpose a total of 11 experiments were carried out. Sodium bicarbonate concentrations ranging of 20-2000 mg/L and pH values from 6.5 to 8.5 were used in the optimization runs. It was found that the pH has a more pronounced effect on the denitrification process as compared to the bicarbonate dose. The developed quadratic model predicted the optimum conditions at pH 8 and 1100 mg NaHCO(3)/L. Using these optimal conditions, the kinetics of denitrification for nitrate and nitrite degradation were investigated in separate experiments. Both processes were found to follow a zero order kinetic model. The ultimate specific degradation rates for nitrate and nitrite remediation were 29.60 mg NO(3)(-)-N/g MLVSS/L and 34.85 mg NO(3)(-)-N/g MLVSS/L respectively, when hydrogen was supplied every 0.5h.
  4. Ghafari S, Hasan M, Aroua MK
    J Hazard Mater, 2009 Mar 15;162(2-3):1507-13.
    PMID: 18639979 DOI: 10.1016/j.jhazmat.2008.06.039
    Acclimation of autohydrogenotrophic denitrifying bacteria using inorganic carbon source (CO(2) and bicarbonate) and hydrogen gas as electron donor was performed in this study. In this regard, activated sludge was used as the seed source and sequencing batch reactor (SBR) technique was applied for accomplishing the acclimatization. Three distinct strategies in feeding of carbon sources were applied: (I) continuous sparging of CO(2), (II) bicarbonate plus continuous sparging of CO(2), and (III) only bicarbonate. The pH-reducing nature of CO(2) showed an unfavorable impact on denitrification rate; however bicarbonate resulted in a buffered environment in the mixed liquor and provided a suitable mean to maintain the pH in the desirable range of 7-8.2. As a result, bicarbonate as the only carbon source showed a faster adaptation, while carbon dioxide as the only carbon source as well as a complementary carbon source added to bicarbonate resulted in longer acclimation period. Adapted hydrogenotrophic denitrifying bacteria, using bicarbonate and hydrogen gas in the aforementioned pH range, caused denitrification at a rate of 13.33 mg NO(3)(-)-N/g MLVSS/h for degrading 20 and 30 mg NO(3)(-)-N/L and 9.09 mg NO(3)(-)-N/g MLVSS/h for degrading 50mg NO(3)(-)-N/L.
  5. Issabayeva G, Aroua MK, Sulaiman NM
    J Hazard Mater, 2008 Jun 30;155(1-2):109-13.
    PMID: 18179867 DOI: 10.1016/j.jhazmat.2007.11.036
    The continuous adsorption of lead ions from aqueous solution on commercial, granular, unpretreated palm shell activated carbon (PSAC) was studied. Effect of pH, flow rates and presence of complexing agents (malonic and boric acids) were examined. The breakthrough period was longer at pH 5 indicating higher adsorption capacity of lead ions at higher pH. Increase of the flow rate, expectedly, resulted in the faster saturation of the carbon bed. Presence of complexing agents did not improve adsorption uptake of lead ions. However, presence of malonic acid resulted in smoother pH stabilization of solution compared to single lead and lead with boric acid systems. The results on continuous adsorption of lead were applied to the model proposed by Wang et al. [Y.-H. Wang, S.-H. Lin, R.-S. Juang, Removal of heavy metals ions from aqueous solutions using various low-cost adsorbents, J. Hazard. Mater. B 102 (2003) 291-302]. The agreement between experimental and modelled breakthrough curves was satisfactory at both pHs.
  6. Aroua MK, Zuki FM, Sulaiman NM
    J Hazard Mater, 2007 Aug 25;147(3):752-8.
    PMID: 17339078
    This study deals with the removal of chromium species from aqueous dilute solutions using polymer-enhanced ultrafiltration (PEUF) process. Three water soluble polymers, namely chitosan, polyethyleneimine (PEI) and pectin were selected for this study. The ultrafiltration studies were carried out using a laboratory scale ultrafiltration system equipped with 500,000 MWCO polysulfone hollow fiber membrane. The effects of pH and polymer composition on rejection coefficient and permeate flux at constant pressure have been investigated. For Cr(III), high rejections approaching 100% were obtained at pH higher than 7 for the three tested polymers. With chitosan and pectin, Cr(VI) retention showed a slight increase with solution pH and did not exceed a value of 50%. An interesting result was obtained with PEI. The retention of Cr(VI) approached 100% at low pH and decreased when the pH was increased. This behavior is opposite to what one can expect in the polymer-enhanced ultrafiltration of heavy metals. Furthermore, the concentration of polymer was found to have little effect on rejection. Permeate flux remained almost constant around 25% of pure water flux.
  7. Ghafari S, Hasan M, Aroua MK
    Bioresour Technol, 2008 Jul;99(10):3965-74.
    PMID: 17600700
    Nitrates in different water and wastewater streams raised concerns due to severe impacts on human and animal health. Diverse methods are reported to remove nitrate from water streams which almost fail to entirely treat nitrate, except biological denitrification which is capable of reducing inorganic nitrate compounds to harmless nitrogen gas. Review of numerous studies in biological denitrification of nitrate containing water resources, aquaculture wastewaters and industrial wastewater confirmed the potential of this method and its flexibility towards the remediation of different concentrations of nitrate. The denitrifiers could be fed with organic and inorganic substrates which have different performances and subsequent advantages or disadvantages. Review of heterotrophic and autotrophic denitrifications with different food and energy sources concluded that autotrophic denitrifiers are more effective in denitrification. Autotrophs utilize carbon dioxide and hydrogen as the source of carbon substrate and electron donors, respectively. The application of this method in bio-electro reactors (BERs) has many advantages and is promising. However, this method is not so well established and documented. BERs provide proper environment for simultaneous hydrogen production on cathodes and appropriate consumption by immobilized autotrophs on these cathodes. This survey covers various designs and aspects of BERs and their performances.
  8. Issabayeva G, Aroua MK, Sulaiman NM
    Bioresour Technol, 2006 Dec;97(18):2350-5.
    PMID: 16321520
    The performance of a commercially available palm shell based activated carbon to remove lead ions from aqueous solutions by adsorption was evaluated. The adsorption experiments were carried out at pH 3.0 and 5.0. The effect of malonic and boric acid presence on the adsorption of lead ions was also studied. Palm shell activated carbon showed high adsorption capacity for lead ions, especially at pH 5 with an ultimate uptake of 95.2mg/g. This high uptake showed palm shell activated carbon as amongst the best adsorbents for lead ions. Boric acid presence did not affect significantly lead uptake, whereas malonic acid decreased it. The diffuse layer surface complexation model was applied to predict the extent of adsorption. The model prediction was found to be in concordance with the experimental values.
  9. Hussin F, Aroua MK, Szlachta M
    Chemosphere, 2022 Jan;287(Pt 3):132250.
    PMID: 34547565 DOI: 10.1016/j.chemosphere.2021.132250
    Water pollution is one of the most concerning global environmental problems in this century with the severity and complexity of the issue increases every day. One of the major contributors to water pollution is the discharge of harmful heavy metal wastes into the rivers and water bodies. Without proper treatment, the release of these harmful inorganic waste would endanger the environment by contaminating the food chains of living organisms, hence, leading to potential health risks to humans. The adsorption method has become one of the cost-effective alternative treatments to eliminate heavy metal ions. Since the type of adsorbent material is the most vital factor that determines the effectiveness of the adsorption, continuous efforts have been made in search of cheap adsorbents derived from a variety of waste materials. Fruit waste can be transformed into valuable products, such as biochar, as they are composed of many functional groups, including carboxylic groups and lignin, which is effective in metal binding. The main objective of this study was to review the potential of various types of fruit wastes as an alternative adsorbent for Pb(II) removal. Following a brief overview of the properties and effects of Pb(II), this study discussed the equilibrium isotherms and adsorption kinetic by various adsorption models. The possible adsorption mechanisms and regeneration study for Pb(II) removal were also elaborated in detail to provide a clear understanding of biochar produced using the pyrolysis technique. The future prospects of fruit waste as an adsorbent for the removal of Pb(II) was also highlighted.
  10. Abu Ismaiel A, Aroua MK, Yusoff R
    Sensors (Basel), 2014 Jul 21;14(7):13102-13.
    PMID: 25051034 DOI: 10.3390/s140713102
    In this study, a potentiometric sensor composed of palm shell activated carbon modified with trioctylmethylammonium thiosalicylate (TOMATS) was used for the potentiometric determination of mercury ions in water samples. The proposed potentiometric sensor has good operating characteristics towards Hg (II), including a relatively high selectivity; a Nernstian response to Hg (II) ions in a concentration range of 1.0 × 10(-9) to 1.0 × 10(-2) M, with a detection limit of 1 × 10(-10) M and a slope of 44.08 ± 1.0 mV/decade; and a fast response time (~5 s). No significant changes in electrode potential were observed when the pH was varied over the range of 3-9. Additionally, the proposed electrode was characterized by good selectivity towards Hg (II) and no significant interferences from other cationic or anionic species.
  11. Baharuddin NH, Nik Sulaiman NM, Aroua MK
    J Environ Health Sci Eng, 2014;12(1):61.
    PMID: 24618019 DOI: 10.1186/2052-336X-12-61
    In this study the removal of Chromium (III) and Chromium (VI) ions are investigated via polymer enhanced ultrafiltration under important process parameters. This study proposes the use of unmodified starch as a novel polymer in the ultrafiltration process and its performance on the removal of chromium ions was compared with a commonly used polymer, polyethylene glycol.
  12. Baroutian S, Aroua MK, Raman AA, Sulaiman NM
    Bioresour Technol, 2011 Jan;102(2):1095-102.
    PMID: 20888219 DOI: 10.1016/j.biortech.2010.08.076
    In this study, a novel continuous reactor has been developed to produce high quality methyl esters (biodiesel) from palm oil. A microporous TiO2/Al2O3 membrane was packed with potassium hydroxide catalyst supported on palm shell activated carbon. The central composite design (CCD) of response surface methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst amount and cross flow circulation velocity on the production of biodiesel in the packed bed membrane reactor. The highest conversion of palm oil to biodiesel in the reactor was obtained at 70 °C employing 157.04 g catalyst per unit volume of the reactor and 0.21 cm/s cross flow circulation velocity. The physical and chemical properties of the produced biodiesel were determined and compared with the standard specifications. High quality palm oil biodiesel was produced by combination of heterogeneous alkali transesterification and separation processes in the packed bed membrane reactor.
  13. Owlad M, Aroua MK, Wan Daud WM
    Bioresour Technol, 2010 Jul;101(14):5098-103.
    PMID: 20156679 DOI: 10.1016/j.biortech.2010.01.135
    Removal of Cr(VI) ions from aqueous solution was investigated using modified palm shell activated carbon. Low Molecular Weight Polyethyleneimine (LMW PEI) was used for impregnation purpose. The maximum amount of LMW PEI adsorbed on activated carbon was determined to be approximately 228.2mg/g carbon. The adsorption experiments were carried out in a batch system using potassium dichromate K(2)Cr(2)O(7) as the source of Cr(VI) in the synthetic waste water and modified palm shell activated carbon as the adsorbent. The effects of pH, concentration of Cr(VI) and PEI loaded on activated carbon were studied. The adsorption data were found to fit well with the Freundlich isotherm model. This modified Palm shell activated carbon showed high adsorption capacity for chromium ions.
  14. Yin CY, Aroua MK, Daud WM
    Water Sci Technol, 2007;56(9):95-101.
    PMID: 18025736
    Palm shell activated carbon was modified via surface impregnation with polyethyleneimine (PEI) to enhance removal of Cu(2+) from aqueous solution in this study. The effect of PEI modification on batch adsorption of Cu(2+) as well as the equilibrium behavior of adsorption of metal ions on activated carbon were investigated. PEI modification clearly increased the Cu(2+) adsorption capacities by 68% and 75.86% for initial solution pH of 3 and 5 respectively. The adsorption data of Cu(2+) on both virgin and PEI-modified AC for both initial solution pH of 3 and 5 fitted the Langmuir and Redlich-Peterson isotherms considerably better than the Freundlich isotherm.
  15. Adinata D, Wan Daud WM, Aroua MK
    Bioresour Technol, 2007 Jan;98(1):145-9.
    PMID: 16380249
    Palm shell was used to prepare activated carbon using potassium carbonate (K2CO3) as activating agent. The influence of carbonization temperatures (600-1000 degrees C) and impregnation ratios (0.5-2.0) of the prepared activated carbon on the pore development and yield were investigated. Results showed that in all cases, increasing the carbonization temperature and impregnation ratio, the yield decreased, while the adsorption of CO2 increased, progressively. Specific surface area of activated carbon was maximum about 1170 m2/g at 800 degrees C with activation duration of 2 h and at an impregnation ratio of 1.0.
  16. Tawfiq MF, Aroua MK, Sulaiman NM
    J Environ Sci (China), 2015 Jul 1;33:239-44.
    PMID: 26141898 DOI: 10.1016/j.jes.2015.01.015
    Atmospheric pollution and global warming issues are increasingly becoming major environmental concerns. Fire is one of the significant sources of pollutant gases released into the atmosphere; and tropical biomass fires, which are of particular interest in this study, contribute greatly to the global budget of CO and CO2. This pioneer research simulates the natural biomass burning strategy in Malaysia using an experimental burning facility. The investigation was conducted on the emissions (CO2, CO, and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)) from ten tropical biomass species. The selected species represent the major tropical forests that are frequently subjected to dry forest fire incidents. An experimental burning facility equipped with an on-line gas analyzer was employed to determine the burning emissions. The major emission factors were found to vary among the species, and the specific results were as follows. The moisture content of a particular biomass greatly influenced its emission pattern. The smoke analysis results revealed the existence of BTEX, which were sampled from a combustion chamber by enrichment traps aided with a universal gas sampler. The BTEX were determined by organic solvent extraction followed by GC/MS quantification, the results of which suggested that the biomass burning emission factor contributed significant amounts of benzene, toluene, and m,p-xylene. The modified combustion efficiency (MCE) changed in response to changes in the sample moisture content. Therefore, this study concluded that the emission of some pollutants mainly depends on the burning phase and sample moisture content of the biomass.
  17. Halilu A, Hayyan M, Aroua MK, Yusoff R, Hizaddin HF
    ACS Appl Mater Interfaces, 2019 Jul 24;11(29):25928-25939.
    PMID: 31305059 DOI: 10.1021/acsami.9b05962
    Climate engineering solutions with emphasis on CO2 removal remain a global open challenge to balancing atmospheric CO2 equilibrium levels. As a result, warnings of impending climate disasters are growing every day in urgency. Beyond ordinary CO2 removal through natural CO2 sinks such as oceans and forest vegetation, direct CO2 conversion into valuable intermediaries is necessary. Here, a direct electrosynthesis of the peroxydicarbonate anion (C2O62-) was investigated by the reaction of CO2 with the superoxide ion (O2·-), electrochemically generated from O2 reduction in bis(trifluoromethylsulfonyl)imide [TFSI-] anion derived ionic liquid (IL) media. This is the first time that the IL media were employed successfully for CO2 conversion into C2O62-. Moreover, the charge transfer coefficient for the O2·- generation process in the ILs was less than 0.5, indicating that the process was irreversible. Voltammetry experiments coupled with global electrophilicity index analysis revealed that, when CO2/O2 was contacted simultaneously in the IL medium, O2·- was generated in situ first at a potential of approximately -1.0 V. Also, CO2 was more susceptible to attack by O2·- before any possible interaction with the IL except for [PMIm+][TFSI-]. This was because CO2 has a higher global electrophilicity index (ωCO2 = 0.489 eV) than those for the [EDMPAmm+][TFSI-] and [MOEMMor+][TFSI-]. By further COSMO-RS modeling, CO2 absorption was proven feasible at the COSMO-surface of the [TFSI-] IL-anion where the charge densities were σ = -1.100 and 1.1097 e/nm2. Therefore, the susceptible competitiveness of either IL cations or CO2 to the nucleophilic effects of O2·- was a function of their positive character as estimated by their electrophilicity indices. As determined by experimental attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and DFT-FTIR computation, the reaction yielded C2O62- in the ILs. Consequently, the presence of O=O symmetric stretching FTIR vibrational mode at ∼844 cm-1 coupled with the disappearance of the oxidative cyclic voltammetry waves when sparging CO2 and O2 confirmed the presence of C2O62-. Moreover, based on DFT/B3LYP/6-31G, pure C2O62- has symmetric O=O stretching at ∼805 and ∼844 cm-1 when it is in association with the IL-cation. This was the first spectroscopic observation of C2O62- in ILs, and the O=O symmetric stretching vibration has peculiarity for identifying C2O62- in ILs. This will open new doors to utilize CO2 in industrial applications with the aid of reactive oxygen species.
  18. Halilu A, Hayyan M, Aroua MK, Yusoff R, Hizaddin HF
    Phys Chem Chem Phys, 2021 Jan 21;23(2):1114-1126.
    PMID: 33346756 DOI: 10.1039/d0cp04903d
    Understanding the reaction mechanism that controls the one-electron electrochemical reduction of oxygen is essential for sustainable use of the superoxide ion (O2˙-) during CO2 conversion. Here, stable generation of O2˙- in butyltrimethylammonium bis(trifluoromethylsulfonyl)imide [BMAmm+][TFSI-] ionic liquid (IL) was first detected at -0.823 V vs. Ag/AgCl using cyclic voltammetry (CV). The charge transfer coefficient associated with the process was ∼0.503. It was determined that [BMAmm+][TFSI-] is a task-specific IL with a large negative isovalue surface density accrued from the [BMAmm+] cation with negatively charged C(sp2) and C(sp3). Consequently, [BMAmm+][TFSI-] is less susceptible to the nucleophilic effect of O2˙- because only 8.4% O2˙- decay was recorded from 3 h long-term stability analysis. The CV analysis also detected that O2˙- mediated CO2 conversion in [BMAmm+][TFSI-] at -0.806 V vs. Ag/AgCl as seen by the disappearance of the oxidative faradaic current of O2˙-. Electrochemical impedance spectroscopy (EIS) detected the mechanism of O2˙- generation and CO2 conversion in [BMAmm+][TFSI-] for the first time. The EIS parameters in O2 saturated [BMAmm+][TFSI-] were different from those detected in O2/CO2 saturated [BMAmm+][TFSI-] or CO2 saturated [BMAmm+][TFSI-]. This was rationalized to be due to the formation of a [BMAmm+][TFSI-] film on the GC electrode, creating a 2.031 × 10-9 μF cm-2 double-layer capacitance (CDL). Therefore, during the O2˙- generation and CO2 utilization in [BMAmm+][TFSI-], the CDL increased to 5.897 μF cm-2 and 7.763 μF cm-2, respectively. The CO2 in [BMAmm+][TFSI-] was found to be highly unlikely to be electrochemically converted due to the high charge transfer resistance of 6.86 × 1018 kΩ. Subsequently, O2˙- directly mediated the CO2 conversion through a nucleophilic addition reaction pathway. These results offer new and sustainable opportunities for utilizing CO2 by reactive oxygen species in ionic liquid media.
  19. Mook WT, Ajeel MA, Aroua MK, Szlachta M
    J Environ Sci (China), 2017 Apr;54:184-195.
    PMID: 28391928 DOI: 10.1016/j.jes.2016.02.003
    In this work a novel anode configuration consisting of an iron mesh double layer is proposed for the electrochemical treatment of wastewater. The removal of Reactive Black 5 dye (RB5) from synthetic contaminated water was used as a model system. At a constant anode surface area, identical process operating parameters and batch process mode, the iron mesh double layer electrode showed better performance compared to the conventional single layer iron mesh. The double layer electrode was characterized by RB5 and chemical oxygen demand (COD) removal efficiency of 98.2% and 97.7%, respectively, kinetic rate constant of 0.0385/min, diffusion coefficient of 4.9×10(-5)cm(2)/sec and electrical energy consumption of 20.53kWh/kgdye removed. In the continuous flow system, the optimum conditions suggested by Response Surface Methodology (RSM) are: initial solution pH of 6.29, current density of 1.6mA/cm(2), electrolyte dose of 0.15g/L and flow rate of 11.47mL/min which resulted in an RB5 removal efficiency of 81.62%.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links