Displaying all 4 publications

  1. Davies AB, Ancrenaz M, Oram F, Asner GP
    Proc. Natl. Acad. Sci. U.S.A., 2017 Aug 01;114(31):8307-8312.
    PMID: 28720703 DOI: 10.1073/pnas.1706780114
    The conservation of charismatic and functionally important large species is becoming increasingly difficult. Anthropogenic pressures continue to squeeze available habitat and force animals into degraded and disturbed areas. Ensuring the long-term survival of these species requires a well-developed understanding of how animals use these new landscapes to inform conservation and habitat restoration efforts. We combined 3 y of highly detailed visual observations of Bornean orangutans with high-resolution airborne remote sensing (Light Detection and Ranging) to understand orangutan movement in disturbed and fragmented forests of Malaysian Borneo. Structural attributes of the upper forest canopy were the dominant determinant of orangutan movement among all age and sex classes, with orangutans more likely to move in directions of increased canopy closure, tall trees, and uniform height, as well as avoiding canopy gaps and moving toward emergent crowns. In contrast, canopy vertical complexity (canopy layering and shape) did not affect movement. Our results suggest that although orangutans do make use of disturbed forest, they select certain canopy attributes within these forests, indicating that not all disturbed or degraded forest is of equal value for the long-term sustainability of orangutan populations. Although the value of disturbed habitats needs to be recognized in conservation plans for wide-ranging, large-bodied species, minimal ecological requirements within these habitats also need to be understood and considered if long-term population viability is to be realized.
  2. Evans LJ, Davies AB, Goossens B, Asner GP
    PLoS ONE, 2017;12(10):e0184804.
    PMID: 29020111 DOI: 10.1371/journal.pone.0184804
    Riparian ecosystems are amongst the most biodiverse tropical habitats. They are important, and essential, ecological corridors, linking remnant forest fragments. In this study, we hypothesised that crocodile's actively select nocturnal resting locations based on increased macaque predation potential. We examined the importance of riparian vegetation structure in the maintenance of crocodile hunting behaviours. Using airborne Light Detection and Ranging (LiDAR) and GPS telemetry on animal movement, we identified the repeated use of nocturnal resting sites by adult estuarine crocodiles (Crocodylus porosus) throughout the fragmented Lower Kinabatangan Wildlife Sanctuary in Sabah, Malaysia. Crocodile resting locations were found to resemble, in terms of habitat characteristics, the sleeping sites of long-tailed macaque; positioned in an attempt to avoid predation by terrestrial predators. We found individual crocodiles were actively selecting overhanging vegetation and that the protrusion of trees from the tree line was key to site selection by crocodiles, as well as influencing both the presence and group size of sleeping macaques. Although these findings are correlational, they have broad management implications, with the suggestion that riparian corridor maintenance and quality can have implications beyond that of terrestrial fauna. We further place our findings in the context of the wider ecosystem and the maintenance of trophic interactions, and discuss how future habitat management has the potential to mitigate human-wildlife conflict.
  3. Bryan JE, Shearman PL, Asner GP, Knapp DE, Aoro G, Lokes B
    PLoS ONE, 2013;8(7):e69679.
    PMID: 23874983 DOI: 10.1371/journal.pone.0069679
    The Malaysian states of Sabah and Sarawak are global hotspots of forest loss and degradation due to timber and oil palm industries; however, the rates and patterns of change have remained poorly measured by conventional field or satellite approaches. Using 30 m resolution optical imagery acquired since 1990, forest cover and logging roads were mapped throughout Malaysian Borneo and Brunei using the Carnegie Landsat Analysis System. We uncovered ∼364,000 km of roads constructed through the forests of this region. We estimated that in 2009 there were at most 45,400 km(2) of intact forest ecosystems in Malaysian Borneo and Brunei. Critically, we found that nearly 80% of the land surface of Sabah and Sarawak was impacted by previously undocumented, high-impact logging or clearing operations from 1990 to 2009. This contrasted strongly with neighbouring Brunei, where 54% of the land area remained covered by unlogged forest. Overall, only 8% and 3% of land area in Sabah and Sarawak, respectively, was covered by intact forests under designated protected areas. Our assessment shows that very few forest ecosystems remain intact in Sabah or Sarawak, but that Brunei, by largely excluding industrial logging from its borders, has been comparatively successful in protecting its forests.
  4. Williams SH, Scriven SA, Burslem DFRP, Hill JK, Reynolds G, Agama AL, et al.
    Conserv. Biol., 2019 Dec 15.
    PMID: 31840279 DOI: 10.1111/cobi.13450
    Current conservation planning tends to focus on protecting species ranges or landscape connectivity but seldom both - particularly in the case of diverse taxonomic assemblages and multiple planning goals. Therefore we lack information on potential tradeoffs between maintaining landscape connectivity and achieving other conservation objectives. Here we develop a prioritization approach to protect species ranges, different ecosystem types, and forest carbon stocks, while also incorporating dispersal corridors to link existing protected areas and habitat connectivity for protection of range-shifting species. We apply our framework to Sabah, Malaysia, where the State Government has mandated an increase in protected area coverage of ∼305,000 ha but without having specified where the new protected areas will be. Compared to conservation planning that does not explicitly account for connectivity, our approach increased the protection of dispersal corridors and elevational connectivity by 13% and 21%, respectively, while decreasing the coverage of other conservation features by 0% (vertebrate and plant species ranges; forest types), 2% (forest carbon), and 3% (butterfly species ranges). Hence, large increases in the protection of landscape connectivity can be achieved with minimal loss of representation of other conservation targets. Article impact statement: New protected area design in Sabah, Borneo, reveals that connectivity can used in planning without compromising other conservation goals. This article is protected by copyright. All rights reserved.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links