Displaying all 9 publications

Abstract:
Sort:
  1. Azhar NA, Abu Bakar SA, Citartan M, Ahmad NH
    World J Hepatol, 2023 Mar 27;15(3):393-409.
    PMID: 37034237 DOI: 10.4254/wjh.v15.i3.393
    BACKGROUND: The demand for the development of cancer nanomedicine has increased due to its great therapeutic value that can overcome the limitations of conventional cancer therapy. However, the presence of various bioactive compounds in crude plant extracts used for the synthesis of silver nanoparticles (AgNPs) makes its precise mechanisms of action unclear.

    AIM: To assessed the mRNA transcriptome profiling of human HepG2 cells exposed to Catharanthus roseus G. Don (C. roseus)-AgNPs.

    METHODS: The proliferative activity of hepatocellular carcinoma (HepG2) and normal human liver (THLE3) cells treated with C. roseusAgNPs were measured using MTT assay. The RNA samples were extracted and sequenced using BGIseq500 platform. This is followed by data filtering, mapping, gene expression analysis, differentially expression genes analysis, Gene Ontology analysis, and pathway analysis.

    RESULTS: The mean IC50 values of C. roseusAgNPs on HepG2 was 4.38 ± 1.59 μg/mL while on THLE3 cells was 800 ± 1.55 μg/mL. Transcriptome profiling revealed an alteration of 296 genes. C. roseusAgNPs induced the expression of stress-associated genes such as MT, HSP and HMOX-1. Cellular signalling pathways were potentially activated through MAPK, TNF and TGF pathways that are responsible for apoptosis and cell cycle arrest. The alteration of ARF6, EHD2, FGFR3, RhoA, EEA1, VPS28, VPS25, and TSG101 indicated the uptake of C. roseus-AgNPs via both clathrin-dependent and clathrin-independent endocytosis.

    CONCLUSION: This study provides new insights into gene expression study of biosynthesised AgNPs on cancer cells. The cytotoxicity effect is mediated by the aberrant gene alteration, and more interestingly the unique selective antiproliferative properties indicate the C. roseusAgNPs as an ideal anticancer candidate.

  2. Azhar NA, Ghozali SZ, Abu Bakar SA, Lim V, Ahmad NH
    Toxicol In Vitro, 2020 Sep;67:104910.
    PMID: 32526345 DOI: 10.1016/j.tiv.2020.104910
    Application of silver nanoparticles serves as a new approach in cancer treatment due to its unique features. Biosynthesis of silver nanoparticles using plant is advantageous since they are easily accessible, nontoxic and produce quicker reaction compared to other methods. To evaluate the cytotoxicity, mechanism of cell death and DNA damage of biosynthesized Catharanthus roseus-silver nanoparticles on human liver cancer (HepG2) cells. The antiproliferative activity of Catharanthus roseus‑silver nanoparticles was measured using MTT assay. The cytotoxic effects were further evaluated by measuring nitric oxide and reactive oxygen species (ROS). The mechanism of cell death was determined by annexin-FITC/propidium iodide, mitochondrial membrane potential (MMP) and cell cycle assays. The assessment of DNA damage was evaluated using Comet assay method. The uptake of the nanoparticles were evaluated by Transmission Electron Microscopy (TEM). Catharanthus roseus‑silver nanoparticles has inhibited the proliferation of HepG2 cells in a time-dependent manner with a median IC50 value of 3.871 ± 0.18 μg/mL. The concentration of nitrite and ROS were significantly higher than control. The cell death was due to apoptosis associated with MMP loss, cell cycle arrest, and extensive DNA damage. TEM analysis indicated the presence of free nanoparticles and endosomes containing the nanoparticles. The findings show that Catharanthus roseus‑silver nanoparticles have produced cytotoxic effects on HepG2 cells and thus may have a potential to be used as an anticancer treatment, particularly for hepatocellular carcinoma.
  3. Vellasamy S, Tong CK, Azhar NA, Kodiappan R, Chan SC, Veerakumarasivam A, et al.
    Cytotherapy, 2016 10;18(10):1270-83.
    PMID: 27543068 DOI: 10.1016/j.jcyt.2016.06.017
    BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) have been identified as pan-immunosuppressant in various in vitro and in vivo inflammatory models. Although the immunosuppressive activity of MSCs has been explored in various contexts, the precise molecular signaling pathways that govern inhibitory functions remain poorly elucidated.

    METHODS: By using a microarray-based global gene expression profiling system, this study aimed to decipher the underlying molecular pathways that may mediate the immunosuppressive activity of umbilical cord-derived MSCs (UC-MSCs) on activated T cells.

    RESULTS: In the presence of UC-MSCs, the proliferation of activated T cells was suppressed in a dose-depended manner by cell-to-cell contact mode via an active cell-cycle arrest at the G0/G1 phase of the cell cycle. The microarray analysis revealed that particularly, IFNG, CXCL9, IL2, IL2RA and CCND3 genes were down-regulated, whereas IL11, VSIG4, GFA1, TIMP3 and BBC3 genes were up-regulated by UC-MSCs. The dysregulated gene clusters associated with immune-response-related ontologies, namely, lymphocyte proliferation or activation, apoptosis and cell cycle, were further analyzed.

    CONCLUSIONS: Among the nine canonical pathways identified, three pathways (namely T-helper cell differentiation, cyclins and cell cycle regulation, and gap/tight junction signalling pathways) were highly enriched with these dysregulated genes. The pathways represent putative molecular pathways through which UC-MSCs elicit immunosuppressive activity toward activated T cells. This study provides a global snapshot of gene networks and pathways that contribute to the ability of UC-MSCs to suppress activated T cells.

  4. Azhar NA, Paul BT, Jesse FFA, Mohd-Lila MA, Chung ELT, Kamarulrizal MI
    Trop Anim Health Prod, 2023 Aug 17;55(5):291.
    PMID: 37589856 DOI: 10.1007/s11250-023-03706-0
    The lipopolysaccharide (LPS) endotoxin and outer membrane protein (OMP) are among the virulence factors of Gram-negative bacteria responsible for inducing pathogenicity in the infected host. OMP and LPS occur on the outer membrane of M. haemolytica A2, the primary aetiological agent of pneumonic mannheimiosis in small ruminants. While the LPS is known to mediate Gram-negative bacterial infection by activating downstream inflammatory pathways, the potential role of OMP during inflammatory responses remained unclear. Hence, this study determined the effect of the OMP of M. haemolytica A2 on the serum concentration of pro-inflammatory cytokines and the male reproductive hormones (testosterone and Luteinizing Hormone). We randomly assigned twelve bucks to three groups (n = 4 bucks each): Group 1 was challenged with 2 mL PBS buffer (pH 7.0) intranasally; Group 2 received 2 mL of 1.2 X 109 CFU/mL whole M. haemolytica A2 intranasally; and Group 3 received 2 mL of OMP extract obtained from 1.2 X 109 CFU/mL M. haemolytica A2 intramuscularly. Serum samples collected at pre-determined intervals were used for the quantitative determination of the pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) and reproductive hormones (testosterone and LH) using commercial sandwich enzyme-linked immunosorbent assay (ELISA). The serum concentration of IL1β was initially increased within the first-hour post-challenge in Groups 2 and 3, followed by a significant decrease in concentration at 21d and 35d (p  0.05) lower than in Group 1 throughout the study. There was a moderate negative association between testosterone and IL1β (r = -0.473; p > 0.05) or TNFα (r = -0.527; p  0.05). The results of this study demonstrated that M. haemolytica A2 and its OMP produced marked alterations in serum levels of pro-inflammatory cytokines and male reproductive hormones. The negative correlations between serum testosterone and inflammatory cytokines would suggest the potential role of OMP in causing male infertility by mediating innate inflammatory responses to suppress testosterone production in bucks.
  5. Chauhan A, Mazlee AM, Azhar NA, Ng Bansing SA, Qing CS, Sidhu DS, et al.
    J Oral Biol Craniofac Res, 2020 09 17;10(4):670-673.
    PMID: 32995257 DOI: 10.1016/j.jobcr.2020.09.003
    Objective: High intensity workout stimulates the sympathetic nervous system and causes changes in the salivary composition. We hypothesized that activity of caries-causing bacteria in saliva may differ before and after workout. The objective of the study was to investigate if there is any difference in the oral microbial activity before and after HIIT (High Intensity Interval Training) workout.

    Methods: Unstimulated saliva was collected before and after HIIT workout (n = 35). The workout was performed until the participant's heart rate reached 70-80% of maximum heart rate. The microbial activity of saliva was estimated using Oratest.

    Results: The participants belonged to 4 ethnities- Indian, Malays, Chinese and Others (18-22 years). The post-workout salivary microbial activity was higher than the pre-workout levels, being statistically significant (P = 0.010). The increase in the post-workout microbial activity among females was found to be higher when compared to males. We also found significant different according to the ethnicities.

    Conclusion: We conclude that caries activity increases immediately after a vigorous workout and remains high at least for 15 min. Further studies are needed to validate the findings. Workout enthusiast should be aware of this so that they can take necessary precautions and be more regular with their dental check-ups.

  6. Azhar NA, Paul BT, Jesse FFA, Chung ELT, Isa KM, Lila MAM, et al.
    Trop Anim Health Prod, 2021 Apr 03;53(2):242.
    PMID: 33811523 DOI: 10.1007/s11250-021-02683-6
    Previous studies have shown that Mannheimia haemolytica A2 is the principal microorganism causing pneumonic mannheimiosis, a major bacterial respiratory disease among sheep and goats. The effect of this bacteria on the respiratory system is well-established. However, its effect on the reproductive physiology remains unclear. Therefore, this study aimed to determine the alterations in the level of pro-inflammatory cytokines and testosterone hormone post-inoculation with M. haemolytica serotype A2 and its lipopolysaccharide (LPS) endotoxin which were hypothesized to affect the reproductive functions of bucks. Twelve clinically healthy adult male goats were divided equally into three groups. Goats in group 1 were treated with 2 ml of sterile phosphate-buffered saline (PBS) pH 7.0 intranasally (negative control), group 2 with 2 ml of 109 colony-forming unit (CFU) of M. haemolytica serotype A2 intranasally (positive control), and group 3 were treated with 2 ml of lipopolysaccharide extracted from 109 CFU of M. haemolytica serotype A2 intravenously. Following inoculation, blood samples were collected via jugular venipuncture into plain tubes at pre-determined intervals for serum collection to determine the concentration of interleukin (IL)-1β, IL6, tumor necrosis factor (TNF)-α, and testosterone hormone by using commercial ELISA test kits. Results from this study demonstrated that the inoculation of M. haemolytica A2 and its LPS increases the concentration of pro-inflammatory cytokines but decreases the concentration of testosterone hormone in challenged animals at most time points throughout the 56 days experimental period (p < 0.05). This study suggests that the M. haemolytica A2 and its LPS could alter the concentration of pro-inflammatory cytokines and testosterone hormone, which in turn, may negatively affect the reproductive functions of bucks.
  7. Yeo AS, Azhar NA, Yeow W, Talbot CC, Khan MA, Shankar EM, et al.
    PLoS One, 2014;9(4):e92240.
    PMID: 24727912 DOI: 10.1371/journal.pone.0092240
    Dengue represents one of the most serious life-threatening vector-borne infectious diseases that afflicts approximately 50 million people across the globe annually. Whilst symptomatic infections are frequently reported, asymptomatic dengue remains largely unnoticed. Therefore, we sought to investigate the immune correlates conferring protection to individuals that remain clinically asymptomatic.
  8. Azmi AF, Yahya MAAM, Azhar NA, Ibrahim N, Ghafar NA, Ghani NAA, et al.
    Int J Mol Sci, 2023 Mar 17;24(6).
    PMID: 36982842 DOI: 10.3390/ijms24065775
    Cord blood-platelet lysate (CB-PL), containing growth factors such as a platelet-derived growth factor, has a similar efficacy to peripheral blood-platelet lysate (PB-PL) in initiating cell growth and differentiation, which makes it a unique alternative to be implemented into oral ulceration healing. This research study aimed to compare the effectiveness of CB-PL and PB-PL in promoting oral wound closure in vitro. Alamar blue assay was used to determine the optimal concentration of CB-PL and PB-PL in enhancing the proliferation of human oral mucosal fibroblasts (HOMF). The percentage of wound closure was measured using the wound-healing assay for CB-PL and PB-PL at the optimal concentration of 1.25% and 0.3125%, respectively. The gene expressions of cell phenotypic makers (Col. I, Col. III, elastin and fibronectin) were determined via qRT-PCR. The concentrations of PDGF-BB were quantified using ELISA. We found that CB-PL was as effective as PB-PL in promoting wound-healing and both PL were more effective compared to the control (CTRL) group in accelerating the cell migration in the wound-healing assay. The gene expressions of Col. III and fibronectin were significantly higher in PB-PL compared to CB-PL. The PDGF-BB concentration of PB-PL was the highest and it decreased after the wound closed on day 3. Therefore, we concluded that PL from both sources can be a beneficial treatment for wound-healing, but PB-PL showed the most promising wound-healing properties in this study.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links