Displaying publications 1 - 20 of 36 in total

  1. Rizwan M, Hamdi M, Basirun WJ
    J Biomed Mater Res A, 2017 Nov;105(11):3197-3223.
    PMID: 28686004 DOI: 10.1002/jbm.a.36156
    Bioglass® 45S5 (BG) has an outstanding ability to bond with bones and soft tissues, but its application as a load-bearing scaffold material is restricted due to its inherent brittleness. BG-based composites combine the amazing biological and bioactive characteristics of BG with structural and functional features of other materials. This article reviews the composites of Bioglass® in combination with metals, ceramics and polymers for a wide range of potential applications from bone scaffolds to nerve regeneration. Bioglass® also possesses angiogenic and antibacterial properties in addition to its very high bioactivity; hence, composite materials developed for these applications are also discussed. BG-based composites with polymer matrices have been developed for a wide variety of soft tissue engineering. This review focuses on the research that suggests the suitability of BG-based composites as a scaffold material for hard and soft tissues engineering. Composite production techniques have a direct influence on the bioactivity and mechanical behavior of scaffolds. A detailed discussion of the bioactivity, in vitro and in vivo biocompatibility and biodegradation is presented as a function of materials and its processing techniques. Finally, an outlook for future research is also proposed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3197-3223, 2017.
  2. Choong CE, Ibrahim S, Basirun WJ
    J Colloid Interface Sci, 2019 Apr 01;541:12-17.
    PMID: 30682589 DOI: 10.1016/j.jcis.2019.01.071
    The present study reports the removal of Bisphenol A (BPA) and Ibuprofen (IBP) using adsorbents prepared from batik sludge. The calcite sludge-aluminum hydroxide (CAl) adsorbent was prepared by calcination and followed by aluminum hydroxide impregnation. The batik sludge and prepared adsorbents were characterized by FESEM, TGA, XRD, FTIR and BET techniques. The maximum adsorption capacity, adsorption time, different initial solution pH, ionic strength and regeneration study of the adsorbents were also investigated. Furthermore, the sorption behavior of the pollutants were studied by the Langmuir and Freundlich isotherms. The deposition of Al(OH)3 enhanced the BPA and IBP adsorption capacity on the CAl surface. The maximum removal capacity of BPA and Ibuprofen were 83.53 mg g-1 and 34.96 mg g-1 for the CAl adsorbent. In addition, the kinetic data for BPA and IBP were fitted to the pseudo first order, pseudo second order, Elovich, parabolic diffusion and power function equations to understand the sorption behavior. The adsorption behavior of BPA and IBP was mainly chemisorption. This study shows that CAl is a promising adsorbent for the removal of BPA and IBP.
  3. Basirun WJ, Sookhakian M, Baradaran S, Mahmoudian MR, Ebadi M
    Nanoscale Res Lett, 2013;8(1):397.
    PMID: 24059434 DOI: 10.1186/1556-276X-8-397
    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.
  4. Ebadi M, Basirun WJ, Alias Y, Mahmoudian M
    Chem Cent J, 2010;4:14.
    PMID: 20604934 DOI: 10.1186/1752-153X-4-14
    Electrodeposition of Ni-Co-Fe-Zn alloys was done in a chloride ion solution with the presence and absence of a Permanent Parallel Magnetic Field (PPMF). The PPMF was applied parallel to the cathode surface. The deposition profile was monitored chronoamperometrically. It was found that the electrodeposition current was enhanced in the presence of PPMF (9 T) compared to without PPMF. The percentage of current enhancement (Gamma%) was increased in the presence of PPMF, with results of Gamma% = 11.9%, 16.7% and 18.5% at -1.1, -1.2 and -1.3 V respectively for a 2400 sec duration. In chronoamperometry, the Composition Reference Line (CRL) for Ni was around 57%, although the nobler metals (i.e. Ni, Co) showed anomalous behaviour in the presence of Zn and Fe. The anomalous behaviour of the Ni-Co-Fe-Zn electrodeposition was shown by the Energy Dispersive X-Ray (EDX) results. From Atomic Force Microscopy (AFM) measurements, it was found that the surface roughness of the Ni-Co-Fe-Zn alloy films decreased in the presence of a PPMF.
  5. Baradaran S, Basirun WJ, Zalnezhad E, Hamdi M, Sarhan AA, Alias Y
    J Mech Behav Biomed Mater, 2013 Apr;20:272-82.
    PMID: 23453827 DOI: 10.1016/j.jmbbm.2013.01.020
    In this study, titanium thin films were deposited on alumina substrates by radio frequency (RF) magnetron sputtering. The mechanical properties of the Ti coatings were evaluated in terms of adhesion strength at various RF powers, temperatures, and substrate bias voltages. The coating conditions of 400W of RF power, 250°C, and a 75V substrate bias voltage produced the strongest coating adhesion, as obtained by the Taguchi optimisation method. TiO2 nanotube arrays were grown as a second layer on the Ti substrates using electrochemical anodisation at a constant potential of 20V and anodisation times of 15min, 45min, and 75min in a NH4F electrolyte solution (75 ethylene glycol: 25 water). The anodised titanium was annealed at 450°C and 650°C in a N2 gas furnace to obtain different phases of titania, anatase and rutile, respectively. The mechanical properties of the anodised layer were investigated by nanoindentation. The results indicate that Young's modulus and hardness increased with annealing temperature to 650°C.
  6. Sookhakian M, Basirun WJ, Goh BT, Woi PM, Alias Y
    Colloids Surf B Biointerfaces, 2019 Apr 01;176:80-86.
    PMID: 30594706 DOI: 10.1016/j.colsurfb.2018.12.058
    A metal-inorganic composite, comprises of silver-molybdenum disulfide nanosheets (Ag@MoS2) was synthesized at low temperature. The Ag@MoS2 composite was drop-casted onto a glassy carbon electrode (GCE) for a highly selective dopamine (DA) detection in the presence of interfering compounds such as uric acid (UA) and ascorbic acid (AA). The physicochemical analysis of the nanosheets was carried out with X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The as-prepared Ag@MoS2-modified GCE displayed excellent electrocatalytic activity toward DA oxidation, with a 0.2 μM detection limit at a signal-to-noise ratio of 3 and an extensive linear detection range from 1 μM to 500 μM (R2 = 0.9983). The fabricated non-enzymatic electrochemical sensor demonstrated superior selectivity and stability for the detection of DA with the removal of AA and UA interfering compounds.
  7. Naureen B, Haseeb ASMA, Basirun WJ, Muhamad F
    Mater Sci Eng C Mater Biol Appl, 2021 Jan;118:111228.
    PMID: 33254956 DOI: 10.1016/j.msec.2020.111228
    Organ repair, regeneration, and transplantation are constantly in demand due to various acute, chronic, congenital, and infectious diseases. Apart from traditional remedies, tissue engineering (TE) is among the most effective methods for the repair of damaged tissues via merging the cells, growth factors, and scaffolds. With regards to TE scaffold fabrication technology, polyurethane (PU), a high-performance medical grade synthetic polymer and bioactive material has gained significant attention. PU possesses exclusive biocompatibility, biodegradability, and modifiable chemical, mechanical and thermal properties, owing to its unique structure-properties relationship. During the past few decades, PU TE scaffold bioactive properties have been incorporated or enhanced with biodegradable, electroactive, surface-functionalised, ayurvedic products, ceramics, glass, growth factors, metals, and natural polymers, resulting in the formation of modified polyurethanes (MPUs). This review focuses on the recent advances of PU/MPU scaffolds, especially on the biomedical applications in soft and hard tissue engineering and regenerative medicine. The scientific issues with regards to the PU/MPU scaffolds, such as biodegradation, electroactivity, surface functionalisation, and incorporation of active moieties are also highlighted along with some suggestions for future work.
  8. Saidur MR, Aziz AR, Basirun WJ
    Biosens Bioelectron, 2017 Apr 15;90:125-139.
    PMID: 27886599 DOI: 10.1016/j.bios.2016.11.039
    The presence of heavy metal in food chains due to the rapid industrialization poses a serious threat on the environment. Therefore, detection and monitoring of heavy metals contamination are gaining more attention nowadays. However, the current analytical methods (based on spectroscopy) for the detection of heavy metal contamination are often very expensive, tedious and can only be handled by trained personnel. DNA biosensors, which are based on electrochemical transduction, is a sensitive but inexpensive method of detection. The principles, sensitivity, selectivity and challenges of electrochemical biosensors are discussed in this review. This review also highlights the major advances of DNA-based electrochemical biosensors for the detection of heavy metal ions such as Hg(2+), Ag(+), Cu(2+) and Pb(2+).
  9. Mahmoudian MR, Basirun WJ, Woi PM, Sookhakian M, Yousefi R, Ghadimi H, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Feb;59:500-508.
    PMID: 26652401 DOI: 10.1016/j.msec.2015.10.055
    The present study examines the synthesis of Co3O4 ultra-nanosheets (Co3O4 UNSs) and Co3O4 ultra-nanosheet-Ni(OH)2 (Co3O4 UNS-Ni(OH)2) via solvothermal process and their application as non-enzymatic electrochemical sensors for glucose detection. X-ray diffraction and transmission electron microscopy results confirmed the Co3O4 UNS deposition on Ni(OH)2 surface. The presence of Co3O4 UNSs on Ni (OH) 2 surface improved the sensitivity of glucose detection, from the increase of glucose oxidation peak current at the Co3O4 UNS-Ni(OH)2/glassy carbon electrode (current density: 2000μA·cm(-2)), compared to the Co3O4 UNSs. These results confirmed that Ni(OH)2 on glassy carbon electrode is a sensitive material for glucose detection, moreover the Co3O4 UNSs can increase the interaction and detection of glucose due to their high surface area. The estimated limit of detection (S/N=3) and limit of quantification (S/N=10) of the linear segment (5-40μM) are 1.08μM and 3.60μM respectively. The reproducibility experiments confirmed the feasibility of Co3O4 UNS-Ni(OH)2 for the quantitative detection of certain concentration ranges of glucose.
  10. Baradaran S, Moghaddam E, Nasiri-Tabrizi B, Basirun WJ, Mehrali M, Sookhakian M, et al.
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:656-668.
    PMID: 25686995 DOI: 10.1016/j.msec.2015.01.050
    The effect of the addition of an ionic dopant to calcium phosphates for biomedical applications requires specific research due to the essential roles played in such processes. In the present study, the mechanical and biological properties of Ni-doped hydroxyapatite (HA) and Ni-doped HA mixed with graphene nanoplatelets (GNPs) were evaluated. Ni (3wt.% and 6wt.%)-doped HA was synthesized using a continuous precipitation method and calcined at 900°C for 1h. The GNP (0.5-2wt.%)-reinforced 6% Ni-doped HA (Ni6) composite was prepared using rotary ball milling for 15h. The sintering process was performed using hot isostatic pressing at processing conditions of 1150°C and 160MPa with a 1-h holding time. The results indicated that the phase compositions and structural features of the products were noticeably affected by the Ni and GNPs. The mechanical properties of Ni6 and 1.5Ni6 were increased by 55% and 75% in hardness, 59% and 163% in fracture toughness and 120% and 85% in elastic modulus compared with monolithic HA, respectively. The in-vitro biological behavior was investigated using h-FOB osteoblast cells in 1, 3 and 5days of culture. Based on the osteoblast results, the cytotoxicity of the products was indeed affected by the Ni doping. In addition, the effect of GNPs on the growth and proliferation of osteoblast cells was investigated in Ni6 composites containing different ratios of GNPs, where 1.5wt.% was the optimum value.
  11. Ahmed S, Shahid MM, Bakar SA, Arshed N, Basirun WJ, Fouad H
    J Nanosci Nanotechnol, 2020 12 01;20(12):7705-7709.
    PMID: 32711646 DOI: 10.1166/jnn.2020.18570
    Herein, we report the synthesis of SnO, Cu₂O and SnO-Cu₂O mixed oxide thin films on fluorinedoped tin oxide (FTO) substrate by Aerosol-Assisted Chemical Vapour Deposition (AACVD) process using [Cu (dmae)₂(H₂O)] and [Sn (dmae) (OAc)]₂ as molecular precursors for SnO and Cu₂O, respectively at 400 °C. The X-ray diffraction (XRD) pattern can be ascribed to the tetragonal phase of SnO crystals with space group P4 and cubic phase of Cu₂O crystals with space group Pn- 3m/nmm, respectively. The surface morphology characteristics of SnO, Cu₂O and SnO-Cu₂Omixed oxide have been investigated using Field Emission Scanning Electron Microscope (FESEM) which revealed that the SnO was grown homogeneously in cubical shape while Cu₂O possess nano balls shaped morphologies. The UV band gap values of SnO-Cu₂O mixed oxide thin film was found to be 2.6 eV appropriate for photoelectrochemical (PEC) applications. The synthesized material was proposed for PEC applications and has shown enhanced catalytic performance in the presence of light.
  12. Lee EL, Haseeb ASMA, Basirun WJ, Wong YH, Sabri MFM, Low BY
    Sci Rep, 2021 Aug 03;11(1):15768.
    PMID: 34344974 DOI: 10.1038/s41598-021-95276-0
    The miniaturization of electronic devices and the consequent decrease in the distance between conductive lines have increased the risk of short circuit failure due to electrochemical migration (ECM). The presence of ionic contaminants affects the ECM process. This work systematically investigates the ECM of tin (Sn) in the presence of bromide ions (Br-) in the range of 10-6 M to 1.0 M. Water drop test (WDT) was conducted in the two-probe semiconductor characterization system under an optical microscope as an in-situ observation. Polarization test was carried out to study the correlation between the corrosion properties of Sn and its ECM behaviour. The products of ECM were characterized by scanning electron microscope coupled with an energy dispersive X-rays spectrometer (SEM/EDX) and X-ray photoelectron spectrometer (XPS). The results confirm that the rate of anodic dissolution of Sn monotonously increases with the Br- concentration. However, the probability of ECM failure follows a normal distribution initially, but later increases with the Br- concentration. The main products of the ECM reactions are identified as Sn dendrites and tin hydroxide precipitates. The mechanisms of the ECM process of Sn in the presence of Br- are also suggested.
  13. Rafieerad AR, Bushroa AR, Nasiri-Tabrizi B, Kaboli SHA, Khanahmadi S, Amiri A, et al.
    J Mech Behav Biomed Mater, 2017 May;69:1-18.
    PMID: 28027481 DOI: 10.1016/j.jmbbm.2016.11.019
    Recently, the robust optimization and prediction models have been highly noticed in district of surface engineering and coating techniques to obtain the highest possible output values through least trial and error experiments. Besides, due to necessity of finding the optimum value of dependent variables, the multi-objective metaheuristic models have been proposed to optimize various processes. Herein, oriented mixed oxide nanotubular arrays were grown on Ti-6Al-7Nb (Ti67) implant using physical vapor deposition magnetron sputtering (PVDMS) designed by Taguchi and following electrochemical anodization. The obtained adhesion strength and hardness of Ti67/Nb were modeled by particle swarm optimization (PSO) to predict the outputs performance. According to developed models, multi-objective PSO (MOPSO) run aimed at finding PVDMS inputs to maximize current outputs simultaneously. The provided sputtering parameters were applied as validation experiment and resulted in higher adhesion strength and hardness of interfaced layer with Ti67. The as-deposited Nb layer before and after optimization were anodized in fluoride-base electrolyte for 300min. To crystallize the coatings, the anodically grown mixed oxide TiO2-Nb2O5-Al2O3 nanotubes were annealed at 440°C for 30min. From the FESEM observations, the optimized adhesive Nb interlayer led to further homogeneity of mixed nanotube arrays. As a result of this surface modification, the anodized sample after annealing showed the highest mechanical, tribological, corrosion resistant and in-vitro bioactivity properties, where a thick bone-like apatite layer was formed on the mixed oxide nanotubes surface within 10 days immersion in simulated body fluid (SBF) after applied MOPSO. The novel results of this study can be effective in optimizing a variety of the surface properties of the nanostructured implants.
  14. Akhter S, Basirun WJ, Alias Y, Johan MR, Bagheri S, Shalauddin M, et al.
    Anal Biochem, 2018 06 15;551:29-36.
    PMID: 29753720 DOI: 10.1016/j.ab.2018.05.004
    In the present study, a nanocomposite of f-MWCNTs-chitosan-Co was prepared by the immobilization of Co(II) on f-MWCNTs-chitosan by a self-assembly method and used for the quantitative determination of paracetamol (PR). The composite was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive x-ray analysis (EDX). The electroactivity of cobalt immobilized on f-MWCNTs-chitosan was assessed during the electro-oxidation of paracetamol. The prepared GCE modified f-MWCNTs/CTS-Co showed strong electrocatalytic activity towards the oxidation of PR. The electrochemical performances were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range between 0.1 and 400 μmol L-1 with a detection limit of 0.01 μmol L-1 for the PR solution. The fabricated sensor exhibited significant selectivity towards PR detection. The fabricated sensor was successfully applied for the determination of PR in commercial tablets and human serum sample.
  15. Rasouli E, Shahnavaz Z, Basirun WJ, Rezayi M, Avan A, Ghayour-Mobarhan M, et al.
    Anal Biochem, 2018 09 01;556:136-144.
    PMID: 29981317 DOI: 10.1016/j.ab.2018.07.002
    Human papillomavirus (HPV) is one of the most common sexually transmitted disease, transmitted through intimate skin contact or mucosal membrane. The HPV virus consists of a double-stranded circular DNA and the role of HPV virus in cervical cancer has been studied extensively. Thus it is critical to develop rapid identification method for early detection of the virus. A portable biosensing device could give rapid and reliable results for the identification and quantitative determination of the virus. The fabrication of electrochemical biosensors is one of the current techniques utilized to achieve this aim. In such electrochemical biosensors, a single-strand DNA is immobilized onto an electrically conducting surface and the changes in electrical parameters due to the hybridization on the electrode surface are measured. This review covers the recent developments in electrochemical DNA biosensors for the detection of HPV virus. Due to the several advantages of electrochemical DNA biosensors, their applications have witnessed an increased interest and research focus nowadays.
  16. Rasouli E, Basirun WJ, Rezayi M, Shameli K, Nourmohammadi E, Khandanlou R, et al.
    Int J Nanomedicine, 2018;13:6903-6911.
    PMID: 30498350 DOI: 10.2147/IJN.S158083
    Introduction: In the present research, we report a quick and green synthesis of magnetite nanoparticles (Fe3O4-NPs) in aqueous solution using ferric and ferrous chloride, with different percentages of natural honey (0.5%, 1.0%, 3.0% and 5.0% w/v) as the precursors, stabilizer, reducing and capping agent, respectively. The effect of the stabilizer on the magnetic properties and size of Fe3O4-NPs was also studied.

    Methods: The nanoparticles were characterized by X-ray diffraction (XRD) analysis, field emission scanning electron microscopy, energy dispersive X-ray fluorescence, transmission electron microscopy (TEM), vibrating sample magnetometry (VSM) and Fourier transform infrared spectroscopy.

    Results: The XRD analysis indicated the presence of pure Fe3O4-NPs while the TEM images indicated that the Fe3O4-NPs are spherical with a diameter range between 3.21 and 2.22 nm. The VSM study demonstrated that the magnetic properties were enhanced with the decrease in the percentage of honey. In vitro viability evaluation of Fe3O4-NPs performed by using the MTT assay on the WEHI164 cells demonstrated no significant toxicity in higher concentration up to 140.0 ppm, which allows them to be used in some biological applications such as drug delivery.

    Conclusion: The presented synthesis method can be used for the controlled synthesis of Fe3O4-NPs, which could be found to be important in applications in biotechnology, biosensor and biomedicine, magnetic resonance imaging and catalysis.

  17. Mahmoudian MR, Basirun WJ, Woi PM, Yousefi R, Alias Y
    Anal Bioanal Chem, 2019 Jan;411(2):517-526.
    PMID: 30498983 DOI: 10.1007/s00216-018-1476-x
    We report a green synthesis of oatmeal ZnO/silver composites in the presence of L-glutamine as an electrochemical sensor for Pb2+ detection. The synthesis was performed via the direct reduction of Ag+ in the presence of L-glutamine in NaOH. X-ray diffraction indicated that the Ag+ was completely reduced to metallic Ag. The field emission scanning electron microscopy (FESEM) and energy dispersive X-ray results confirmed an oatmeal-like morphology of the ZnO with the presence of Ag. The FESEM images showed the effect of L-glutamine on the ZnO morphology. The EIS results confirmed a significant decrease in the charge transfer resistance of the modified glassy carbon electrode due to the presence of Ag. From the differential pulse voltammetry results, a linear working range for the concentration of Pb2+ between 5 and 6 nM with LOD of 0.078 nM (S/N = 3) was obtained. The sensitivity of the linear segment is 1.42 μA nM-1 cm-2. The presence of L-glutamine as the capping agent and stabilizer decreases the size of Ag nanoparticles and prevents the agglomeration of ZnO, respectively. Graphical abstract ᅟ.
  18. Khalil I, Yehye WA, Muhd Julkapli N, Sina AA, Rahmati S, Basirun WJ, et al.
    Analyst, 2020 Feb 17;145(4):1414-1426.
    PMID: 31845928 DOI: 10.1039/c9an02106j
    Surface enhanced Raman scattering (SERS) DNA biosensing is an ultrasensitive, selective, and rapid detection technique with the ability to produce molecule-specific distinct fingerprint spectra. It supersedes the long amplicon based PCR assays, the fluorescence and spectroscopic techniques with their quenching and narrow spectral bandwidth, and the electrochemical detection techniques using multiplexing. However, the performance of the SERS DNA biosensor relies on the DNA probe length, platform composition, both the presence and position of Raman tags and the chosen sensing strategy. In this context, we herein report a SERS biosensor based on dual nanoplatforms with a uniquely designed Raman tag (ATTO Rho6G) intercalated short-length DNA probe for the sensitive detection of the pig species Sus scrofa. In the design of the signal probe (SP), a Raman tag was incorporated adjacent to the spacer arm, followed by a terminal thiol modifier, which consequently had a strong influence on the SERS signal enhancement. The detection strategy involves the probe-target DNA hybridization mediated coupling of the two platforms, i.e., the graphene oxide-gold nanorod (GO-AuNR) functionalized capture probe (CP) and SP-conjugated gold nanoparticles (AuNPs), consequently enhancing the SERS intensity by both the electromagnetic hot spots generated at the junctions or interstices of the two platforms and the chemical enhancement between the AuNPs and the adsorbed intercalated Raman tag. This dual platform based SERS DNA biosensor exhibited outstanding sensitivity in detecting pork DNA with a limit of detection (LOD) of 100 aM validated with DNA extracted from a pork sample (LOD 1 fM). Moreover, the fabricated SERS biosensor showed outstanding selectivity and specificity for differentiating the DNA sequences of six closely related non-target species from the target DNA sequences with single and three nucleotide base-mismatches. Therefore, the developed short-length DNA linked dual platform based SERS biosensor could replace the less sensitive traditional methods of pork DNA detection and be adopted as a universal detection approach for the qualitative and quantitative detection of DNA from any source.
  19. Mahmoudian MR, Basirun WJ, Woi PM, Hazarkhani H, Alias YB
    Mikrochim Acta, 2019 05 22;186(6):369.
    PMID: 31119482 DOI: 10.1007/s00604-019-3481-y
    The study presents the synthesis of polypyrrole-coated palladium platinum/nitrogen-doped reduced graphene oxide nanocomposites (PdPt-PPy/N-rGO NC) via direct the reduction of Pd(II) and Pt(II) in the presence of pyrrole monomer, N-rGO and L-cysteine as the reducing agent. X-ray diffraction confirmed the presence of metallic Pd and Pt from the reduction of Pd and Pt cations. Transmission electron microscopy images revealed the presence of Pd, Pt and PPy deposition on N-rGO. Impedance spectroscopy results gave a decreased charge transfer resistance due to the presence of N-rGO. The nanocomposites were synthesized with different Pd/Pt ratios (2:1, 1:1 and 1:2). A glassy carbon electrode (GCE) modified with the nanocomposite showed enhanced electrochemical sensing capability for formaldehyde in 0.1 M sulfuric acid solution. Cyclic voltammetry showed an increase in the formaldehyde oxidation peak current at the GCE modified with Pd2Pt1 PPy N-rGO. At a typical potential of 0.45 V (vs. SCE), the sensitivity in the linear segment was 345.8 μA.mM -1. cm-2. The voltammetric response was linear between 0.01 and 0.9 mM formaldehyde concentration range, with a 27 µM detection limit (at S/N = 3). Graphical abstract Schematic presentation of formaldehyde detection by Pd2Pt1-PPy/nitrogen-doped reduced Graphene Oxide Nanocomposite (Pd2Pt1-PPy /N-Gr NC). The decrease of charge transfer resistance and the agglomeration of deposited metals in the presence of N-rGO enhance the current response of the electrochemical sensor.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links