Displaying all 8 publications

  1. Bello MM, Abdul Raman AA
    J Environ Manage, 2017 Aug 01;198(Pt 1):170-182.
    PMID: 28460324 DOI: 10.1016/j.jenvman.2017.04.050
    Palm oil processing is a multi-stage operation which generates large amount of effluent. On average, palm oil mill effluent (POME) may contain up to 51, 000 mg/L COD, 25,000 mg/L BOD, 40,000 TS and 6000 mg/L oil and grease. Due to its potential to cause environmental pollution, palm oil mills are required to treat the effluent prior to discharge. Biological treatments using open ponding system are widely used for POME treatment. Although these processes are capable of reducing the pollutant concentrations, they require long hydraulic retention time and large space, with the effluent frequently failing to satisfy the discharge regulation. Due to more stringent environmental regulations, research interest has recently shifted to the development of polishing technologies for the biologically-treated POME. Various technologies such as advanced oxidation processes, membrane technology, adsorption and coagulation have been investigated. Among these, advanced oxidation processes have shown potentials as polishing technologies for POME. This paper offers an overview on the POME polishing technologies, with particularly emphasis on advanced oxidation processes and their prospects for large scale applications. Although there are some challenges in large scale applications of these technologies, this review offers some perspectives that could help in overcoming these challenges.
  2. Huda N, Raman AAA, Bello MM, Ramesh S
    J Environ Manage, 2017 Dec 15;204(Pt 1):75-81.
    PMID: 28865309 DOI: 10.1016/j.jenvman.2017.08.028
    The main problem of landfill leachate is its diverse composition comprising many persistent organic pollutants which must be removed before being discharge into the environment. This study investigated the treatment of raw landfill leachate using electrocoagulation process. An electrocoagulation system was designed with iron as both the anode and cathode. The effects of inter-electrode distance, initial pH and electrolyte concentration on colour and COD removals were investigated. All these factors were found to have significant effects on the colour removal. On the other hand, electrolyte concentration was the most significant parameter affecting the COD removal. Numerical optimization was also conducted to obtain the optimum process performance. Under optimum conditions (initial pH: 7.73, inter-electrode distance: 1.16 cm, and electrolyte concentration (NaCl): 2.00 g/L), the process could remove up to 82.7% colour and 45.1% COD. The process can be applied as a pre-treatment for raw leachates before applying other appropriate treatment technologies.
  3. Sherlala AIA, Raman AAA, Bello MM, Asghar A
    Chemosphere, 2018 Feb;193:1004-1017.
    PMID: 29874727 DOI: 10.1016/j.chemosphere.2017.11.093
    Graphene-based adsorbents have attracted wide interests as effective adsorbents for heavy metals removal from the environment. Due to their excellent electrical, mechanical, optical and transport properties, graphene and its derivatives such as graphene oxide (GO) have found various applications. However, in many applications, surface modification is necessary as pristine graphene/GO may be ineffective in some specific applications such as adsorption of heavy metal ions. Consequently, the modification of graphene/GO using various metals and non-metals is an ongoing research effort in the carbon-material realm. The use of organic materials represents an economical and environmentally friendly approach in modifying GO for environmental applications such as heavy metal adsorption. This review discusses the applications of organo-functionalized GO composites for the adsorption of heavy metals. The aspects reviewed include the commonly used organic materials for modifying GO, the performance of the modified composites in heavy metals adsorption, effects of operational parameters, adsorption mechanisms and kinetic, as well as the stability of the adsorbents. Despite the significant research efforts on GO modification, many aspects such as the interaction between the functional groups and the heavy metal ions, and the quantitative effect of the functional groups are yet to be fully understood. The review, therefore, offers some perspectives on the future research needs.
  4. Sherlala AIA, Raman AAA, Bello MM
    Environ Technol, 2019 May;40(12):1508-1516.
    PMID: 29300679 DOI: 10.1080/09593330.2018.1424259
    A magnetic graphene oxide (MGO) was developed for the adsorption of As(III) from aqueous solution. The characteristics of MGO were investigated using Fourier-transform infrared (FTIR), X-ray diffraction and field emission scanning electron microscope-E/energy-dispersive X-ray analyses. Batch adsorption experiments were designed using central composite design, and the effects of adsorbent dosage, pH, contact time and concentration of As(III) were investigated. The MGO showed an excellent performance, removing up to 99.95% of As(III) under the following condition: initial As(III) concentration = 100 mg/L, pH = 7, adsorbent dosage = 0.3 g/L and contact time = 77 min. MGO dosage and initial pH were the most significant parameters influencing the process performance. FTIR analysis of the used adsorbent confirms the adsorption of As(III) through complexation between surface functional groups of the MGO and the oxyanions of As(III). The adsorbent maintained a significant level of performance even after four cycles of adsorption. Thus, the developed MGO has the potential to be used for the abatement of arsenic pollution.
  5. Sherlala AIA, Raman AAA, Bello MM, Buthiyappan A
    J Environ Manage, 2019 Sep 15;246:547-556.
    PMID: 31202019 DOI: 10.1016/j.jenvman.2019.05.117
    Chitosan-magnetic-graphene oxide (CMGO) nanocomposite was prepared for arsenic adsorption. The nanocomposite was characterized through BET, FTIR, FESEM, EDX, and VSM analyses. These characterizations confirmed the formation of CMGO nanocomposites with high specific surface area (152.38 m2/g) and excellent saturation magnetization (49.30 emu/g). Batch adsorption experiments were conducted to evaluate the performance of the nanocomposite in the adsorption of arsenic from aqueous solution. The effects of operational parameters, adsorption kinetic, equilibrium isotherm and thermodynamics were evaluated. The removal efficiency of arsenic increased with increasing adsorbent dosage and contact time. However, the effect of pH followed a different pattern, with the removal efficiency increasing from acidic to neutral pH, and then decreasing at alkaline conditions. The highest adsorption capacity (45 mg/g) and removal efficiency (61%) were obtained at pH 7.3. The adsorption kinetic followed a pseudo-second-order kinetic model. The analysis of adsorption isotherm shows that the adsorption data fitted well to Langmuir isotherm model, indicating a homogeneous process. Thermodynamic analysis shows that the adsorption of As(III) is exothermic and spontaneous. The superparamagnetic properties of the nanocomposite enabled the separation and recovery of the nanoparticles using an external magnetic field. Thus, the developed nanocomposite has a potential for arsenic remediation.
  6. Shehzad M, Asghar A, Ramzan N, Aslam U, Bello MM
    Waste Manag Res, 2020 Nov;38(11):1284-1294.
    PMID: 32347191 DOI: 10.1177/0734242X20916843
    Biomass is considered as the largest renewable energy source in the world. However, some of its inherent properties such as hygroscopicity, lower energy content, low mass density and bio-degradation on storage hinder its extensive application in energy generation processes. Torrefaction, a thermochemical process carried out at 200-300°C in a non-oxidative environment, can address these inherent problems of the biomass. In this work, torrefaction of bagasse was performed in a bench-scale tubular reactor at 250°C and 275°C with residence times of 30, 60 and 90 mins. The effects of torrefaction conditions on the elemental composition, mass yield, energy yield, oxygen/carbon (O/C) and hydrogen/carbon (H/C) ratios, higher heating values and structural composition were investigated and compared with the commercially available 'Thar 6' and 'Tunnel C' coal. Based on the targeted mass and energy yields of 80% and 90% respectively, the optimal process conditions turned out to be 250°C and 30 mins. Torrefaction of the bagasse conducted at 275°C and 90 min raised the carbon content in bagasse to 58.14% and resulted in a high heating value of 23.84 MJ/kg. The structural and thermal analysis of the torrefied bagasse indicates that the moisture, non-structural carbohydrates and hemicellulose were reduced, which induced the hydrophobicity in the bagasse and enhanced its energy value. These findings showed that torrefaction can be a sustainable pre-treatment process to improve the fuel and structural properties of biomass as a feedstock for energy generation processes.
  7. Bello MM, Nourouzi MM, Abdullah LC, Choong TS, Koay YS, Keshani S
    J Hazard Mater, 2013 Nov 15;262:106-13.
    PMID: 24021163 DOI: 10.1016/j.jhazmat.2013.06.053
    As Malaysia is one of the world's largest producer of palm oil, large amounts of palm oil mill effluent (POME) is generated. It was found that negatively charged components are accountable for POME color. An attempt was made to remove residual contaminants after conventional treatment using anion base resin. Adsorption experiments were carried out in fixed bed column. Various models such as the Thomas, the Yoon-Nelson, the Wolborska and BDST model were used to fit the experimental data. It was found that only the BDST model was fitted well at the initial breakthrough time. A wavelet neural network model (WNN) was developed to model the breakthrough curves in fixed bed column for multicomponent system. The results showed that the WNN model described breakthrough curves better than the commonly used models. The effects of pH, flow rate and bed depth on column performance were investigated. It was found that the highest uptake capacity was obtained at pH 3. The exhaustion time appeared to increase with increase in bed length and decrease in flow rate.
  8. Asghar A, Bello MM, Raman AAA, Daud WMAW, Ramalingam A, Zain SBM
    Heliyon, 2019 Sep;5(9):e02396.
    PMID: 31517121 DOI: 10.1016/j.heliyon.2019.e02396
    In this work, quantum chemical analysis was used to predict the degradation potential of a recalcitrant dye, Acid blue 113, by hydrogen peroxide, ozone, hydroxyl radical and sulfate radical. Geometry optimization and frequency calculations were performed at 'Hartree Fock', 'Becke, 3-parameter, Lee-Yang-Parr' and 'Modified Perdew-Wang exchange combined with PW91 correlation' levels of study using 6-31G* and 6-31G** basis sets. The Fourier Transform-Raman spectra of Acid blue 113 were recorded and a complete analysis on vibrational assignment and fundamental modes of model compound was performed. Natural bond orbital analysis revealed that Acid blue 113 has a highly stable structure due to strong intermolecular and intra-molecular interactions. Mulliken charge distribution and molecular electrostatic potential map of the dye also showed a strong influence of functional groups on the neighboring atoms. Subsequently, the reactivity of the dye towards the oxidants was compared based on the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy values. The results showed that Acid blue 113 with a HOMO value -5.227 eV exhibits a nucleophilic characteristic, with a high propensity to be degraded by ozone and hydroxyl radical due to their lower HOMO-LUMO energy gaps of 4.99 and 4.22 eV respectively. On the other hand, sulfate radical and hydrogen peroxide exhibit higher HOMO-LUMO energy gaps of 7.92 eV and 8.10 eV respectively, indicating their lower reactivity towards Acid blue 113. We conclude that oxidation processes based on hydroxyl radical and ozone would offer a more viable option for the degradation of Acid blue 113. This study shows that quantum chemical analysis can assist in selecting appropriate advanced oxidation processes for the treatment of textile effluent.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links