Displaying all 20 publications

Abstract:
Sort:
  1. Atan R, Crosbie D, Bellomo R
    Int J Artif Organs, 2013 Mar;36(3):149-58.
    PMID: 23446761 DOI: 10.5301/ijao.5000128
    BACKGROUND AND AIMS: Extracorporeal cytokine removal may be desirable. We sought to assess extracorporeal blood purification (EBP) techniques for cytokine removal in experimental animal studies.


    METHODS: We conducted a targeted, systematic search and identified 17 articles. We analyzed cytokine clearance, sieving coefficient (SC), ultrafiltrate (UF) concentration, and percentage removal. As this review concerns technical appraisal of EBP techniques, we made no attempts to appraise the methodology of the studies included. Results are in descriptive terms only.


    RESULTS: Applying predicted clearance for 80 kg human, high volume hemofiltration (HVHF) techniques and plasmafiltration (PF) showed the highest rates of cytokine removal. High cutoff (HCO)/HF and PF techniques showed modest ability to clear cytokines using low to medium flows. Standard hemofiltration had little efficacy. At higher flows, HCO/HF achieved clearances between 30 and 70 ml/min for IL-6 and IL-10. There was essentially no removal of tumor necrosis factor (TNF)-alpha outside of PF.


    CONCLUSIONS: Experimental animal studies indicate that HVHF (especially with HCO filters) and plasmafiltration have the potential to achieve appreciable IL-6 and IL-10 clearances. However, only PF can remove TNF-alpha reliably.

  2. Atan R, Crosbie DC, Bellomo R
    Ren Fail, 2013 Sep;35(8):1061-70.
    PMID: 23866032 DOI: 10.3109/0886022X.2013.815089
    Hypercytokinemia is believed to be harmful and reducing cytokine levels is considered beneficial. Extracorporeal blood purification (EBP) techniques have been studied for the purpose of cytokine reduction. We aimed to study the efficacy of various EBP techniques for cytokine removal as defined by technical measures.
  3. Atan R, May C, Bailey SR, Tanudji M, Visvanathan K, Skinner N, et al.
    Crit Care Resusc, 2015 Dec;17(4):239-43.
    PMID: 26640058
    To measure plasma nucleosome levels and expression of toll-like receptors (TLRs) in a pilot cohort of patients with severe acute kidney injury (AKI) within a randomised controlled trial of continuous venovenous haemofiltration with high cut-off filters (CVVH-HCO) v standard filters (CVVH-std).
  4. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M
    JAMA, 2012 Oct 17;308(15):1566-72.
    PMID: 23073953 DOI: 10.1001/jama.2012.13356
    Administration of traditional chloride-liberal intravenous fluids may precipitate acute kidney injury (AKI).
  5. Atan R, Peck L, Prowle J, Licari E, Eastwood GM, Storr M, et al.
    Crit Care Med, 2018 10;46(10):e988-e994.
    PMID: 30074491 DOI: 10.1097/CCM.0000000000003350
    OBJECTIVES: In critically ill patients with acute kidney injury receiving vasopressors, high cytokine levels may sustain the shock state. High cutoff hemofiltration achieves greater cytokine removal in ex vivo and in animal models and may reduce the duration of shock but may also increase albumin losses.

    DESIGN: This was a single-center double-blind randomized controlled trial comparing continuous venovenous hemofiltration-high cutoff to continuous venovenous hemofiltration-standard.

    SETTING: Tertiary care hospital in Australia.

    PATIENTS: Vasopressor-dependent patients in acute kidney injury who were admitted to the ICU.

    INTERVENTIONS: Norepinephrine-free time were calculated in critically ill vasopressor-dependent patients in acute kidney injury, randomized to either continuous venovenous hemofiltration-high cutoff or continuous venovenous hemofiltration-standard.

    MEASUREMENT AND MAIN RESULTS: A total of 76 patients were randomized with the following characteristics (continuous venovenous hemofiltration-high cutoff vs continuous venovenous hemofiltration-standard); median age of 65 versus 70 year, percentage of males 47% versus 68%, and median Acute Physiology and Chronic Health Evaluation scores of 25 versus 23.5. The median hours of norepinephrine-free time at day 7 were 32 (0-110.8) for continuous venovenous hemofiltration-high cutoff and 56 hours (0-109.3 hr) (p = 0.520) for continuous venovenous hemofiltration-standard. Inhospital mortality was 55.6% with continuous venovenous hemofiltration-high cutoff versus 34.2% with continuous venovenous hemofiltration-standard (adjusted odds ratio, 2.49; 95% CI, 0.81-7.66; p = 0.191). There was no significant difference in time to cessation of norepinephrine (p = 0.358), time to cessation of hemofiltration (p = 0.563), and filter life (p = 0.21). Serum albumin levels (p = 0.192) were similar and the median dose of IV albumin given was 90 grams (20-212 g) for continuous venovenous hemofiltration-high cutoff and 80 grams (15-132 g) for continuous venovenous hemofiltration-standard (p = 0.252).

    CONCLUSIONS: In critically ill patients with acute kidney injury, continuous venovenous hemofiltration-high cutoff did not reduce the duration of vasopressor support or mortality or change albumin levels compared with continuous venovenous hemofiltration-standard.

  6. Yunos NM, Bellomo R, Taylor DM, Judkins S, Kerr F, Sutcliffe H, et al.
    Emerg Med Australas, 2017 Dec;29(6):643-649.
    PMID: 28597505 DOI: 10.1111/1742-6723.12821
    OBJECTIVE: Patients commonly receive i.v. fluids in the ED. It is still unclear whether the choice of i.v. fluids in this setting influences renal or patient outcomes. We aimed to assess the effects of restricting i.v. chloride administration in the ED on the incidence of acute kidney injury (AKI).

    METHODS: We conducted a before-and-after trial with 5008 consecutive ED-treated hospital admissions in the control period and 5146 consecutive admissions in the intervention period. During the control period (18 February 2008 to 17 August 2008), patients received standard i.v. fluids. During the intervention period (18 February 2009 to 17 August 2009), we restricted all chloride-rich fluids. We used the Kidney Disease: Improving Global Outcomes (KDIGO) staging to define AKI.

    RESULTS: Stage 3 of KDIGO-defined AKI decreased from 54 (1.1%; 95% confidence interval [CI] 0.8-1.4) to 30 (0.6%; 95% CI 0.4-0.8) (P = 0.006). The rate of renal replacement therapy did not change, from 13 (0.3%; 95% CI 0.2-0.4) to 8 (0.2%; 95% CI 0.1-0.3) (P = 0.25). After adjustment for relevant covariates, liberal chloride therapy remained associated with a greater risk of KDIGO stage 3 (hazard ratio 1.82; 95% CI 1.13-2.95; P = 0.01). On sensitivity assessment after removing repeat admissions, KDIGO stage 3 remained significantly lower in the intervention period compared with the control period (P = 0.01).

    CONCLUSION: In a before-and-after trial, a chloride-restrictive strategy in an ED was associated with a significant decrease in the incidence of stage 3 of KDIGO-defined AKI.

  7. Atan R, Peck L, Visvanathan K, Skinner N, Eastwood G, Bellomo R, et al.
    Int J Artif Organs, 2016 Nov 11;39(9):479-486.
    PMID: 27834446 DOI: 10.5301/ijao.5000527
    PURPOSE: To study the effects of continuous veno-venous hemofiltration (CVVH) with high cut-off filters (CVVH-HCO) on plasma cytokine levels, sieving coefficient and clearance compared to CVVH using standard filters (CVVH-Std) in a nested cohort within a double-blind randomized controlled trial in severe acute kidney injury (AKI) patients.

    METHODS: We measured plasma and post-filter levels of IL-6, TNF-alpha, IL-8, IL-1 beta, RANTES, IL-10, IFN-gamma and IFN-alpha in both study groups. We also measured cytokine levels in the ultrafiltrate and calculated sieving coefficients and clearances.

    RESULTS: By 72 hours of treatment, IL-6 had decreased during both treatments (p = 0.009 and 0.005 respectively). In contrast, IL-10 had decreased with CVVH-Std (p = 0.03) but not CVVH-HCO (p = 0.135). None of the other cytokines showed changes over time. There were also no significant between group differences in plasma levels for each cytokine over the 72-hour treatment period. For all cytokines combined, however, the median sieving coefficient was higher for CVVH-HCO (0.31 vs. 0.16; p = 0.042) as was the mass removal rate by ultrafiltration (p = 0.027). While overall combined cytokine levels had fallen to 62.2% of baseline at 72 hours for CVVH-HCO (p<0.0001) and to 75.9% of baseline with CVVH-Std (p = 0.008) there were no between group differences.

    CONCLUSIONS: CVVH-HCO achieved greater combined sieving coefficient and mass removal rate by ultrafiltration for a group of key cytokines than CVVH-Std. However, this effect did not differentially lower their plasma level over the first 72 hours. Our study does not support the use of CVVH-HCO to lower cytokines in critically ill patients with AKI.

  8. Atan R, Virzi GM, Peck L, Ramadas A, Brocca A, Eastwood G, et al.
    Blood Purif., 2014;37(4):296-303.
    PMID: 25096908 DOI: 10.1159/000363220
    To measure plasma pro-apoptotic and pro-necrotic activity in severe acute kidney injury (AKI) patients within a randomized controlled trial of continuous veno-venous hemofiltration with high cut-off filters (CVVH-HCO) versus standard filters (CVVH-Std).
  9. Roberts JA, Abdul-Aziz MH, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, et al.
    Am J Respir Crit Care Med, 2016 Sep 15;194(6):681-91.
    PMID: 26974879 DOI: 10.1164/rccm.201601-0024OC
    RATIONALE: Optimization of β-lactam antibiotic dosing for critically ill patients is an intervention that may improve outcomes in severe sepsis.

    OBJECTIVES: In this individual patient data meta-analysis of critically ill patients with severe sepsis, we aimed to compare clinical outcomes of those treated with continuous versus intermittent infusion of β-lactam antibiotics.

    METHODS: We identified relevant randomized controlled trials comparing continuous versus intermittent infusion of β-lactam antibiotics in critically ill patients with severe sepsis. We assessed the quality of the studies according to four criteria. We combined individual patient data from studies and assessed data integrity for common baseline demographics and study endpoints, including hospital mortality censored at 30 days and clinical cure. We then determined the pooled estimates of effect and investigated factors associated with hospital mortality in multivariable analysis.

    MEASUREMENTS AND MAIN RESULTS: We identified three randomized controlled trials in which researchers recruited a total of 632 patients with severe sepsis. The two groups were well balanced in terms of age, sex, and illness severity. The rates of hospital mortality and clinical cure for the continuous versus intermittent infusion groups were 19.6% versus 26.3% (relative risk, 0.74; 95% confidence interval, 0.56-1.00; P = 0.045) and 55.4% versus 46.3% (relative risk, 1.20; 95% confidence interval, 1.03-1.40; P = 0.021), respectively. In a multivariable model, intermittent β-lactam administration, higher Acute Physiology and Chronic Health Evaluation II score, use of renal replacement therapy, and infection by nonfermenting gram-negative bacilli were significantly associated with hospital mortality. Continuous β-lactam administration was not independently associated with clinical cure.

    CONCLUSIONS: Compared with intermittent dosing, administration of β-lactam antibiotics by continuous infusion in critically ill patients with severe sepsis is associated with decreased hospital mortality.

  10. Shehabi Y, Bellomo R, Kadiman S, Ti LK, Howe B, Reade MC, et al.
    Crit Care Med, 2018 06;46(6):850-859.
    PMID: 29498938 DOI: 10.1097/CCM.0000000000003071
    OBJECTIVES: In the absence of a universal definition of light or deep sedation, the level of sedation that conveys favorable outcomes is unknown. We quantified the relationship between escalating intensity of sedation in the first 48 hours of mechanical ventilation and 180-day survival, time to extubation, and delirium.

    DESIGN: Harmonized data from prospective multicenter international longitudinal cohort studies SETTING:: Diverse mix of ICUs.

    PATIENTS: Critically ill patients expected to be ventilated for longer than 24 hours.

    INTERVENTIONS: Richmond Agitation Sedation Scale and pain were assessed every 4 hours. Delirium and mobilization were assessed daily using the Confusion Assessment Method of ICU and a standardized mobility assessment, respectively.

    MEASUREMENTS AND MAIN RESULTS: Sedation intensity was assessed using a Sedation Index, calculated as the sum of negative Richmond Agitation Sedation Scale measurements divided by the total number of assessments. We used multivariable Cox proportional hazard models to adjust for relevant covariates. We performed subgroup and sensitivity analysis accounting for immortal time bias using the same variables within 120 and 168 hours. The main outcome was 180-day survival. We assessed 703 patients in 42 ICUs with a mean (SD) Acute Physiology and Chronic Health Evaluation II score of 22.2 (8.5) with 180-day mortality of 32.3% (227). The median (interquartile range) ventilation time was 4.54 days (2.47-8.43 d). Delirium occurred in 273 (38.8%) of patients. Sedation intensity, in an escalating dose-dependent relationship, independently predicted increased risk of death (hazard ratio [95% CI], 1.29 [1.15-1.46]; p < 0.001, delirium hazard ratio [95% CI], 1.25 [1.10-1.43]), p value equals to 0.001 and reduced chance of early extubation hazard ratio (95% CI) 0.80 (0.73-0.87), p value of less than 0.001. Agitation level independently predicted subsequent delirium hazard ratio [95% CI], of 1.25 (1.04-1.49), p value equals to 0.02. Delirium or mobilization episodes within 168 hours, adjusted for sedation intensity, were not associated with survival.

    CONCLUSIONS: Sedation intensity independently, in an ascending relationship, predicted increased risk of death, delirium, and delayed time to extubation. These observations suggest that keeping sedation level equivalent to a Richmond Agitation Sedation Scale 0 is a clinically desirable goal.

  11. Shehabi Y, Forbes AB, Arabi Y, Bass F, Bellomo R, Kadiman S, et al.
    Crit Care Resusc, 2017 Dec;19(4):318-326.
    PMID: 29202258
    BACKGROUND: Sedation strategy in critically ill patients who are mechanically ventilated is influenced by patient-related factors, choice of sedative agent and the intensity or depth of sedation prescribed. The impact of sedation strategy on outcome, in particular when delivered early after initiation of mechanical ventilation, is uncertain.

    OBJECTIVES: To present the protocol and analysis plan of a large randomised clinical trial investigating the effect of a sedation strategy, in critically ill patients who are mechanically ventilated, based on a protocol targeting light sedation using dexmedetomidine as the primary sedative, termed "early goal-directed sedation", compared with usual practice.

    METHODS: This is a multinational randomised clinical trial in adult intensive care patients expected to require mechanical ventilation for longer than 24 hours. The main exclusion criteria include suspected or proven primary brain pathology or having already been intubated or sedated in an intensive care unit for longer than 12 hours. Randomisation occurs via a secured website with baseline stratification by site and suspected or proven sepsis. The primary outcome is 90-day all-cause mortality. Secondary outcomes include death, institutional dependency, cognitive function and health-related quality of life 180 days after randomisation, as well as deliriumfree, coma-free and ventilation-free days at 28 days after randomisation. A predefined subgroup analysis will also be conducted. Analyses will be on an intention-to-treat basis and in accordance with this pre-specified analysis plan.

    CONCLUSION: SPICE III is an ongoing large scale clinical trial. Once completed, it will inform sedation practice in critically ill patients who are ventilated.

  12. Shehabi Y, Serpa Neto A, Howe BD, Bellomo R, Arabi YM, Bailey M, et al.
    Intensive Care Med, 2021 Apr;47(4):455-466.
    PMID: 33686482 DOI: 10.1007/s00134-021-06356-8
    PURPOSE: To quantify potential heterogeneity of treatment effect (HTE), of early sedation with dexmedetomidine (DEX) compared with usual care, and identify patients who have a high probability of lower or higher 90-day mortality according to age, and other identified clusters.

    METHODS: Bayesian analysis of 3904 critically ill adult patients expected to receive invasive ventilation > 24 h and enrolled in a multinational randomized controlled trial comparing early DEX with usual care sedation.

    RESULTS: HTE was assessed according to age and clusters (based on 12 baseline characteristics) using a Bayesian hierarchical models. DEX was associated with lower 90-day mortality compared to usual care in patients > 65 years (odds ratio [OR], 0.83 [95% credible interval [CrI] 0.68-1.00], with 97.7% probability of reduced mortality across broad categories of illness severity. Conversely, the probability of increased mortality in patients ≤ 65 years was 98.5% (OR 1.26 [95% CrI 1.02-1.56]. Two clusters were identified: cluster 1 (976 patients) mostly operative, and cluster 2 (2346 patients), predominantly non-operative. There was a greater probability of benefit with DEX in cluster 1 (OR 0.86 [95% CrI 0.65-1.14]) across broad categories of age, with 86.4% probability that DEX is more beneficial in cluster 1 than cluster 2.

    CONCLUSION: In critically ill mechanically ventilated patients, early sedation with dexmedetomidine exhibited a high probability of reduced 90-day mortality in older patients regardless of operative or non-operative cluster status. Conversely, a high probability of increased 90-day mortality was observed in younger patients of non-operative status. Further studies are needed to confirm these findings.

  13. Shehabi Y, Howe BD, Bellomo R, Arabi YM, Bailey M, Bass FE, et al.
    N Engl J Med, 2019 Jun 27;380(26):2506-2517.
    PMID: 31112380 DOI: 10.1056/NEJMoa1904710
    BACKGROUND: Dexmedetomidine produces sedation while maintaining a degree of arousability and may reduce the duration of mechanical ventilation and delirium among patients in the intensive care unit (ICU). The use of dexmedetomidine as the sole or primary sedative agent in patients undergoing mechanical ventilation has not been extensively studied.

    METHODS: In an open-label, randomized trial, we enrolled critically ill adults who had been undergoing ventilation for less than 12 hours in the ICU and were expected to continue to receive ventilatory support for longer than the next calendar day to receive dexmedetomidine as the sole or primary sedative or to receive usual care (propofol, midazolam, or other sedatives). The target range of sedation-scores on the Richmond Agitation and Sedation Scale (which is scored from -5 [unresponsive] to +4 [combative]) was -2 to +1 (lightly sedated to restless). The primary outcome was the rate of death from any cause at 90 days.

    RESULTS: We enrolled 4000 patients at a median interval of 4.6 hours between eligibility and randomization. In a modified intention-to-treat analysis involving 3904 patients, the primary outcome event occurred in 566 of 1948 (29.1%) in the dexmedetomidine group and in 569 of 1956 (29.1%) in the usual-care group (adjusted risk difference, 0.0 percentage points; 95% confidence interval, -2.9 to 2.8). An ancillary finding was that to achieve the prescribed level of sedation, patients in the dexmedetomidine group received supplemental propofol (64% of patients), midazolam (3%), or both (7%) during the first 2 days after randomization; in the usual-care group, these drugs were administered as primary sedatives in 60%, 12%, and 20% of the patients, respectively. Bradycardia and hypotension were more common in the dexmedetomidine group.

    CONCLUSIONS: Among patients undergoing mechanical ventilation in the ICU, those who received early dexmedetomidine for sedation had a rate of death at 90 days similar to that in the usual-care group and required supplemental sedatives to achieve the prescribed level of sedation. More adverse events were reported in the dexmedetomidine group than in the usual-care group. (Funded by the National Health and Medical Research Council of Australia and others; SPICE III ClinicalTrials.gov number, NCT01728558.).

  14. Shehabi Y, Serpa Neto A, Bellomo R, Howe BD, Arabi YM, Bailey M, et al.
    Am J Respir Crit Care Med, 2023 Apr 01;207(7):876-886.
    PMID: 36215171 DOI: 10.1164/rccm.202206-1208OC
    Rationale: The SPICE III (Sedation Practice in Intensive Care Evaluation) trial reported significant heterogeneity in mortality with dexmedetomidine treatment. Supplemental propofol was commonly used to achieve desirable sedation. Objectives: To quantify the association of different infusion rates of dexmedetomidine and propofol, given in combination, with mortality and to determine if this is modified by age. Methods: We included 1,177 patients randomized in SPICE III to receive dexmedetomidine and given supplemental propofol, stratified by age (>65 or ⩽65 yr). We used double stratification analysis to produce quartiles of steady infusion rates of dexmedetomidine while escalating propofol dose and vice versa. We used Cox proportional hazard and multivariable regression adjusted for relevant clinical variable to evaluate the association of sedative dose with 90-day mortality. Measurements and Main Results: Younger patients (598 of 1,177 [50.8%]) received significantly higher doses of both sedatives compared with older patients to achieve comparable sedation depth. On double stratification analysis, escalating infusion rates of propofol to 1.27 mg/kg/h at a steady dexmedetomidine infusion rate (0.54 μg/kg/h) was associated with reduced adjusted mortality in younger but not older patients. This was consistent with multivariable regression modeling (hazard ratio, 0.59; 95% confidence interval, 0.43-0.78; P 
  15. Sartini C, Lomivorotov V, Pieri M, Lopez-Delgado JC, Baiardo Redaelli M, Hajjar L, et al.
    J Cardiothorac Vasc Anesth, 2019 05;33(5):1430-1439.
    PMID: 30600204 DOI: 10.1053/j.jvca.2018.11.026
    The authors aimed to identify interventions documented by randomized controlled trials (RCTs) that reduce mortality in adult critically ill and perioperative patients, followed by a survey of clinicians' opinions and routine practices to understand the clinicians' response to such evidence. The authors performed a comprehensive literature review to identify all topics reported to reduce mortality in perioperative and critical care settings according to at least 2 RCTs or to a multicenter RCT or to a single-center RCT plus guidelines. The authors generated position statements that were voted on online by physicians worldwide for agreement, use, and willingness to include in international guidelines. From 262 RCT manuscripts reporting mortality differences in the perioperative and critically ill settings, the authors selected 27 drugs, techniques, and strategies (66 RCTs, most frequently published by the New England Journal of Medicine [13 papers], Lancet [7], and Journal of the American Medical Association [5]) with an agreement ≥67% from over 250 physicians (46 countries). Noninvasive ventilation was the intervention supported by the largest number of RCTs (n = 13). The concordance between agreement and use (a positive answer both to "do you agree" and "do you use") showed differences between Western and other countries and between anesthesiologists and intensive care unit physicians. The authors identified 27 clinical interventions with randomized evidence of survival benefit and strong clinician support in support of their potential life-saving properties in perioperative and critically ill patients with noninvasive ventilation having the highest level of support. However, clinician views appear affected by specialty and geographical location.
  16. Albert C, Zapf A, Haase M, Röver C, Pickering JW, Albert A, et al.
    Am J Kidney Dis, 2020 12;76(6):826-841.e1.
    PMID: 32679151 DOI: 10.1053/j.ajkd.2020.05.015
    RATIONALE & OBJECTIVE: The usefulness of measures of neutrophil gelatinase-associated lipocalin (NGAL) in urine or plasma obtained on clinical laboratory platforms for predicting acute kidney injury (AKI) and AKI requiring dialysis (AKI-D) has not been fully evaluated. We sought to quantitatively summarize published data to evaluate the value of urinary and plasma NGAL for kidney risk prediction.

    STUDY DESIGN: Literature-based meta-analysis and individual-study-data meta-analysis of diagnostic studies following PRISMA-IPD guidelines.

    SETTING & STUDY POPULATIONS: Studies of adults investigating AKI, severe AKI, and AKI-D in the setting of cardiac surgery, intensive care, or emergency department care using either urinary or plasma NGAL measured on clinical laboratory platforms.

    SELECTION CRITERIA FOR STUDIES: PubMed, Web of Science, Cochrane Library, Scopus, and congress abstracts ever published through February 2020 reporting diagnostic test studies of NGAL measured on clinical laboratory platforms to predict AKI.

    DATA EXTRACTION: Individual-study-data meta-analysis was accomplished by giving authors data specifications tailored to their studies and requesting standardized patient-level data analysis.

    ANALYTICAL APPROACH: Individual-study-data meta-analysis used a bivariate time-to-event model for interval-censored data from which discriminative ability (AUC) was characterized. NGAL cutoff concentrations at 95% sensitivity, 95% specificity, and optimal sensitivity and specificity were also estimated. Models incorporated as confounders the clinical setting and use versus nonuse of urine output as a criterion for AKI. A literature-based meta-analysis was also performed for all published studies including those for which the authors were unable to provide individual-study data analyses.

    RESULTS: We included 52 observational studies involving 13,040 patients. We analyzed 30 data sets for the individual-study-data meta-analysis. For AKI, severe AKI, and AKI-D, numbers of events were 837, 304, and 103 for analyses of urinary NGAL, respectively; these values were 705, 271, and 178 for analyses of plasma NGAL. Discriminative performance was similar in both meta-analyses. Individual-study-data meta-analysis AUCs for urinary NGAL were 0.75 (95% CI, 0.73-0.76) and 0.80 (95% CI, 0.79-0.81) for severe AKI and AKI-D, respectively; for plasma NGAL, the corresponding AUCs were 0.80 (95% CI, 0.79-0.81) and 0.86 (95% CI, 0.84-0.86). Cutoff concentrations at 95% specificity for urinary NGAL were>580ng/mL with 27% sensitivity for severe AKI and>589ng/mL with 24% sensitivity for AKI-D. Corresponding cutoffs for plasma NGAL were>364ng/mL with 44% sensitivity and>546ng/mL with 26% sensitivity, respectively.

    LIMITATIONS: Practice variability in initiation of dialysis. Imperfect harmonization of data across studies.

    CONCLUSIONS: Urinary and plasma NGAL concentrations may identify patients at high risk for AKI in clinical research and practice. The cutoff concentrations reported in this study require prospective evaluation.

  17. Sartini C, Lomivorotov V, Pisano A, Riha H, Baiardo Redaelli M, Lopez-Delgado JC, et al.
    J Cardiothorac Vasc Anesth, 2019 Oct;33(10):2685-2694.
    PMID: 31064730 DOI: 10.1053/j.jvca.2019.03.022
    OBJECTIVE: Reducing mortality is a key target in critical care and perioperative medicine. The authors aimed to identify all nonsurgical interventions (drugs, techniques, strategies) shown by randomized trials to increase mortality in these clinical settings.

    DESIGN: A systematic review of the literature followed by a consensus-based voting process.

    SETTING: A web-based international consensus conference.

    PARTICIPANTS: Two hundred fifty-one physicians from 46 countries.

    INTERVENTIONS: The authors performed a systematic literature search and identified all randomized controlled trials (RCTs) showing a significant increase in unadjusted landmark mortality among surgical or critically ill patients. The authors reviewed such studies during a meeting by a core group of experts. Studies selected after such review advanced to web-based voting by clinicians in relation to agreement, clinical practice, and willingness to include each intervention in international guidelines.

    MEASUREMENTS AND MAIN RESULTS: The authors selected 12 RCTs dealing with 12 interventions increasing mortality: diaspirin-crosslinked hemoglobin (92% of agreement among web voters), overfeeding, nitric oxide synthase inhibitor in septic shock, human growth hormone, thyroxin in acute kidney injury, intravenous salbutamol in acute respiratory distress syndrome, plasma-derived protein C concentrate, aprotinin in high-risk cardiac surgery, cysteine prodrug, hypothermia in meningitis, methylprednisolone in traumatic brain injury, and albumin in traumatic brain injury (72% of agreement). Overall, a high consistency (ranging from 80% to 90%) between agreement and clinical practice was observed.

    CONCLUSION: The authors identified 12 clinical interventions showing increased mortality supported by randomized controlled trials with nonconflicting evidence, and wide agreement upon clinicians on a global scale.

  18. Landoni G, Lomivorotov V, Pisano A, Nigro Neto C, Benedetto U, Biondi Zoccai G, et al.
    Contemp Clin Trials, 2017 08;59:38-43.
    PMID: 28533194 DOI: 10.1016/j.cct.2017.05.011
    OBJECTIVE: There is initial evidence that the use of volatile anesthetics can reduce the postoperative release of cardiac troponin I, the need for inotropic support, and the number of patients requiring prolonged hospitalization following coronary artery bypass graft (CABG) surgery. Nevertheless, small randomized controlled trials have failed to demonstrate a survival advantage. Thus, whether volatile anesthetics improve the postoperative outcome of cardiac surgical patients remains uncertain. An adequately powered randomized controlled trial appears desirable.

    DESIGN: Single blinded, international, multicenter randomized controlled trial with 1:1 allocation ratio.

    SETTING: Tertiary and University hospitals.

    INTERVENTIONS: Patients (n=10,600) undergoing coronary artery bypass graft will be randomized to receive either volatile anesthetic as part of the anesthetic plan, or total intravenous anesthesia.

    MEASUREMENTS AND MAIN RESULTS: The primary end point of the study will be one-year mortality (any cause). Secondary endpoints will be 30-day mortality; 30-day death or non-fatal myocardial infarction (composite endpoint); cardiac mortality at 30day and at one year; incidence of hospital re-admission during the one year follow-up period and duration of intensive care unit, and hospital stay. The sample size is based on the hypothesis that volatile anesthetics will reduce 1-year unadjusted mortality from 3% to 2%, using a two-sided alpha error of 0.05, and a power of 0.9.

    CONCLUSIONS: The trial will determine whether the simple intervention of adding a volatile anesthetic, an intervention that can be implemented by all anesthesiologists, can improve one-year survival in patients undergoing coronary artery bypass graft surgery.

  19. Landoni G, Lomivorotov VV, Nigro Neto C, Monaco F, Pasyuga VV, Bradic N, et al.
    N Engl J Med, 2019 03 28;380(13):1214-1225.
    PMID: 30888743 DOI: 10.1056/NEJMoa1816476
    BACKGROUND: Volatile (inhaled) anesthetic agents have cardioprotective effects, which might improve clinical outcomes in patients undergoing coronary-artery bypass grafting (CABG).

    METHODS: We conducted a pragmatic, multicenter, single-blind, controlled trial at 36 centers in 13 countries. Patients scheduled to undergo elective CABG were randomly assigned to an intraoperative anesthetic regimen that included a volatile anesthetic (desflurane, isoflurane, or sevoflurane) or to total intravenous anesthesia. The primary outcome was death from any cause at 1 year.

    RESULTS: A total of 5400 patients were randomly assigned: 2709 to the volatile anesthetics group and 2691 to the total intravenous anesthesia group. On-pump CABG was performed in 64% of patients, with a mean duration of cardiopulmonary bypass of 79 minutes. The two groups were similar with respect to demographic and clinical characteristics at baseline, the duration of cardiopulmonary bypass, and the number of grafts. At the time of the second interim analysis, the data and safety monitoring board advised that the trial should be stopped for futility. No significant difference between the groups with respect to deaths from any cause was seen at 1 year (2.8% in the volatile anesthetics group and 3.0% in the total intravenous anesthesia group; relative risk, 0.94; 95% confidence interval [CI], 0.69 to 1.29; P = 0.71), with data available for 5353 patients (99.1%), or at 30 days (1.4% and 1.3%, respectively; relative risk, 1.11; 95% CI, 0.70 to 1.76), with data available for 5398 patients (99.9%). There were no significant differences between the groups in any of the secondary outcomes or in the incidence of prespecified adverse events, including myocardial infarction.

    CONCLUSIONS: Among patients undergoing elective CABG, anesthesia with a volatile agent did not result in significantly fewer deaths at 1 year than total intravenous anesthesia. (Funded by the Italian Ministry of Health; MYRIAD ClinicalTrials.gov number, NCT02105610.).

  20. Roberts JA, Joynt GM, Lee A, Choi G, Bellomo R, Kanji S, et al.
    Clin Infect Dis, 2021 04 26;72(8):1369-1378.
    PMID: 32150603 DOI: 10.1093/cid/ciaa224
    BACKGROUND: The optimal dosing of antibiotics in critically ill patients receiving renal replacement therapy (RRT) remains unclear. In this study, we describe the variability in RRT techniques and antibiotic dosing in critically ill patients receiving RRT and relate observed trough antibiotic concentrations to optimal targets.

    METHODS: We performed a prospective, observational, multinational, pharmacokinetic study in 29 intensive care units from 14 countries. We collected demographic, clinical, and RRT data. We measured trough antibiotic concentrations of meropenem, piperacillin-tazobactam, and vancomycin and related them to high- and low-target trough concentrations.

    RESULTS: We studied 381 patients and obtained 508 trough antibiotic concentrations. There was wide variability (4-8-fold) in antibiotic dosing regimens, RRT prescription, and estimated endogenous renal function. The overall median estimated total renal clearance (eTRCL) was 50 mL/minute (interquartile range [IQR], 35-65) and higher eTRCL was associated with lower trough concentrations for all antibiotics (P < .05). The median (IQR) trough concentration for meropenem was 12.1 mg/L (7.9-18.8), piperacillin was 78.6 mg/L (49.5-127.3), tazobactam was 9.5 mg/L (6.3-14.2), and vancomycin was 14.3 mg/L (11.6-21.8). Trough concentrations failed to meet optimal higher limits in 26%, 36%, and 72% and optimal lower limits in 4%, 4%, and 55% of patients for meropenem, piperacillin, and vancomycin, respectively.

    CONCLUSIONS: In critically ill patients treated with RRT, antibiotic dosing regimens, RRT prescription, and eTRCL varied markedly and resulted in highly variable antibiotic concentrations that failed to meet therapeutic targets in many patients.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links