Displaying all 2 publications

Abstract:
Sort:
  1. Vijaya Bhaskar Reddy A, Yusop Z, Jaafar J, Bin Aris A, Abdul Majid Z, Umar K, et al.
    J Sep Sci, 2016 Jun;39(12):2276-83.
    PMID: 27095506 DOI: 10.1002/jssc.201600155
    A sensitive and selective gas chromatography with mass spectrometry method was developed for the simultaneous determination of three organophosphorus pesticides, namely, chlorpyrifos, malathion, and diazinon in three different food commodities (milk, apples, and drinking water) employing solid-phase extraction for sample pretreatment. Pesticide extraction from different sample matrices was carried out on Chromabond C18 cartridges using 3.0 mL of methanol and 3.0 mL of a mixture of dichloromethane/acetonitrile (1:1 v/v) as the eluting solvent. Analysis was carried out by gas chromatography coupled with mass spectrometry using selected-ion monitoring mode. Good linear relationships were obtained in the range of 0.1-50 μg/L for chlorpyrifos, and 0.05-50 μg/L for both malathion and diazinon pesticides. Good repeatability and recoveries were obtained in the range of 78.54-86.73% for three pesticides under the optimized experimental conditions. The limit of detection ranged from 0.02 to 0.03 μg/L, and the limit of quantification ranged from 0.05 to 0.1 μg/L for all three pesticides. Finally, the developed method was successfully applied for the determination of three targeted pesticides in milk, apples, and drinking water samples each in triplicate. No pesticide was found in apple and milk samples, but chlorpyrifos was found in one drinking water sample below the quantification level.
  2. Reddy AVB, Yusop Z, Jaafar J, Bin Aris A, Abdul Majid Z
    J Sep Sci, 2017 Aug;40(15):3086-3093.
    PMID: 28581679 DOI: 10.1002/jssc.201700252
    An extremely sensitive and simple gas chromatography with mass spectrometry method was developed and completely validated for the analysis of five process-related impurities, viz., 4-hydroxy-l-phenylglycine, 4-hydroxyphenylacetonitrile, 4-hydroxyphenylacetic acid, methyl-4-hydroxyphenylacetate, and 2-[4-{(2RS)-2-hydroxy-3-[(1-methylethyl)amino]propoxy}phenyl]acetonitrile, in atenolol. The separation of impurities was accomplished on a BPX-5 column with dimensions of 50 m × 0.25 mm i.d. and 0.25 μm film thickness. The method validation was performed following International Conference on Harmonisation guidelines in which the method was capable to quantitate 4-hydroxy-l-phenylglycine, 4-hydroxyphenylacetonitrile, and 4-hydroxyphenylacetic acid at 0.3 ppm, and methyl-4-hydroxyphenylacetate and 2-[4-{(2RS)-2-hydroxy-3-[(1-methylethyl)amino]propoxy}phenyl]acetonitrile at 0.35 ppm with respect to 10 mg/mL of atenolol. The method was linear over the concentration range of 0.3-10 ppm for 4-hydroxy-l-phenylglycine, 4-hydroxyphenylacetonitrile, and 4-hydroxyphenylacetic acid, and 0.35-10 ppm for methyl-4-hydroxyphenylacetate and 2-[4-{(2RS)-2-hydroxy-3-[(1-methylethyl)amino]propoxy}phenyl]acetonitrile. The correlation coefficient in each case was found ≥0.998. The repeatability and recovery values were acceptable, and found between 89.38% and 105.60% for all five impurities under optimized operating conditions. The method developed here is simple, selective, and sensitive with apparently better resolution than the reported methods. Hence, the method is a straightforward and good quality control tool for the quantitation of selected impurities at trace concentrations in atenolol.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links