Displaying all 4 publications

Abstract:
Sort:
  1. Blanco I, Bustillo EF, Rodriguez MC
    Clin Genet, 2001 Dec;60(6):431-41.
    PMID: 11846735
    The objective of the present study was to review published surveys on allelic frequencies S and Z in countries outside Europe to evaluate the validity of the reported data. Studies on the topic, published from 1965 to May 2001, were retrieved using MEDLINE and bibliographic reference consultations. The criteria for the selection of the studies were the following: 1) sample size >or=250 individuals; 2) alpha1-antitrypsin phenotype determination performed by means of crossed antigen-antibody, isoelectric focusing in polyacrylamide gels, or polymerase chain reaction (PCR); 3) PI type determination performed without any previous screening procedure; 4) S and Z 95% CI of the reported outcomes within the limits of a calculated coefficient of variation. Forty-three out of 85 studies comply with the established criteria for being analysed. Worldwide maps of geographical distributions of PI S and PI Z frequencies have been designed by the authors by adding the data provided by these 43 selected studies to the 70 reported in a recent European meta-analysis.
  2. Bancroft EK, Page EC, Castro E, Lilja H, Vickers A, Sjoberg D, et al.
    Eur Urol, 2014 Sep;66(3):489-99.
    PMID: 24484606 DOI: 10.1016/j.eururo.2014.01.003
    BACKGROUND: Men with germline breast cancer 1, early onset (BRCA1) or breast cancer 2, early onset (BRCA2) gene mutations have a higher risk of developing prostate cancer (PCa) than noncarriers. IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening in BRCA1/2 mutation carriers and controls) is an international consortium of 62 centres in 20 countries evaluating the use of targeted PCa screening in men with BRCA1/2 mutations.

    OBJECTIVE: To report the first year's screening results for all men at enrollment in the study.

    DESIGN, SETTING AND PARTICIPANTS: We recruited men aged 40-69 yr with germline BRCA1/2 mutations and a control group of men who have tested negative for a pathogenic BRCA1 or BRCA2 mutation known to be present in their families. All men underwent prostate-specific antigen (PSA) testing at enrollment, and those men with PSA >3 ng/ml were offered prostate biopsy.

    OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: PSA levels, PCa incidence, and tumour characteristics were evaluated. The Fisher exact test was used to compare the number of PCa cases among groups and the differences among disease types.

    RESULTS AND LIMITATIONS: We recruited 2481 men (791 BRCA1 carriers, 531 BRCA1 controls; 731 BRCA2 carriers, 428 BRCA2 controls). A total of 199 men (8%) presented with PSA >3.0 ng/ml, 162 biopsies were performed, and 59 PCas were diagnosed (18 BRCA1 carriers, 10 BRCA1 controls; 24 BRCA2 carriers, 7 BRCA2 controls); 66% of the tumours were classified as intermediate- or high-risk disease. The positive predictive value (PPV) for biopsy using a PSA threshold of 3.0 ng/ml in BRCA2 mutation carriers was 48%-double the PPV reported in population screening studies. A significant difference in detecting intermediate- or high-risk disease was observed in BRCA2 carriers. Ninety-five percent of the men were white, thus the results cannot be generalised to all ethnic groups.

    CONCLUSIONS: The IMPACT screening network will be useful for targeted PCa screening studies in men with germline genetic risk variants as they are discovered. These preliminary results support the use of targeted PSA screening based on BRCA genotype and show that this screening yields a high proportion of aggressive disease.

    PATIENT SUMMARY: In this report, we demonstrate that germline genetic markers can be used to identify men at higher risk of prostate cancer. Targeting screening at these men resulted in the identification of tumours that were more likely to require treatment.

  3. Kuchenbaecker KB, Ramus SJ, Tyrer J, Lee A, Shen HC, Beesley J, et al.
    Nat Genet, 2015 Feb;47(2):164-71.
    PMID: 25581431 DOI: 10.1038/ng.3185
    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.
  4. Rebbeck TR, Mitra N, Wan F, Sinilnikova OM, Healey S, McGuffog L, et al.
    JAMA, 2015 Apr 07;313(13):1347-61.
    PMID: 25849179 DOI: 10.1001/jama.2014.5985
    IMPORTANCE: Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists.

    OBJECTIVE: To identify mutation-specific cancer risks for carriers of BRCA1/2.

    DESIGN, SETTING, AND PARTICIPANTS: Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations. The international sample comprised 19,581 carriers of BRCA1 mutations and 11,900 carriers of BRCA2 mutations from 55 centers in 33 countries on 6 continents. We estimated hazard ratios for breast and ovarian cancer based on mutation type, function, and nucleotide position. We also estimated RHR, the ratio of breast vs ovarian cancer hazard ratios. A value of RHR greater than 1 indicated elevated breast cancer risk; a value of RHR less than 1 indicated elevated ovarian cancer risk.

    EXPOSURES: Mutations of BRCA1 or BRCA2.

    MAIN OUTCOMES AND MEASURES: Breast and ovarian cancer risks.

    RESULTS: Among BRCA1 mutation carriers, 9052 women (46%) were diagnosed with breast cancer, 2317 (12%) with ovarian cancer, 1041 (5%) with breast and ovarian cancer, and 7171 (37%) without cancer. Among BRCA2 mutation carriers, 6180 women (52%) were diagnosed with breast cancer, 682 (6%) with ovarian cancer, 272 (2%) with breast and ovarian cancer, and 4766 (40%) without cancer. In BRCA1, we identified 3 breast cancer cluster regions (BCCRs) located at c.179 to c.505 (BCCR1; RHR = 1.46; 95% CI, 1.22-1.74; P = 2 × 10(-6)), c.4328 to c.4945 (BCCR2; RHR = 1.34; 95% CI, 1.01-1.78; P = .04), and c. 5261 to c.5563 (BCCR2', RHR = 1.38; 95% CI, 1.22-1.55; P = 6 × 10(-9)). We also identified an ovarian cancer cluster region (OCCR) from c.1380 to c.4062 (approximately exon 11) with RHR = 0.62 (95% CI, 0.56-0.70; P = 9 × 10(-17)). In BRCA2, we observed multiple BCCRs spanning c.1 to c.596 (BCCR1; RHR = 1.71; 95% CI, 1.06-2.78; P = .03), c.772 to c.1806 (BCCR1'; RHR = 1.63; 95% CI, 1.10-2.40; P = .01), and c.7394 to c.8904 (BCCR2; RHR = 2.31; 95% CI, 1.69-3.16; P = .00002). We also identified 3 OCCRs: the first (OCCR1) spanned c.3249 to c.5681 that was adjacent to c.5946delT (6174delT; RHR = 0.51; 95% CI, 0.44-0.60; P = 6 × 10(-17)). The second OCCR spanned c.6645 to c.7471 (OCCR2; RHR = 0.57; 95% CI, 0.41-0.80; P = .001). Mutations conferring nonsense-mediated decay were associated with differential breast or ovarian cancer risks and an earlier age of breast cancer diagnosis for both BRCA1 and BRCA2 mutation carriers.

    CONCLUSIONS AND RELEVANCE: Breast and ovarian cancer risks varied by type and location of BRCA1/2 mutations. With appropriate validation, these data may have implications for risk assessment and cancer prevention decision making for carriers of BRCA1 and BRCA2 mutations.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links