Displaying all 3 publications

Abstract:
Sort:
  1. Gallagher MT, Cupples G, Ooi EH, Kirkman-Brown JC, Smith DJ
    Hum Reprod, 2019 07 08;34(7):1173-1185.
    PMID: 31170729 DOI: 10.1093/humrep/dez056
    STUDY QUESTION: Can flagellar analyses be scaled up to provide automated tracking of motile sperm, and does knowledge of the flagellar waveform provide new insight not provided by routine head tracking?

    SUMMARY ANSWER: High-throughput flagellar waveform tracking and analysis enable measurement of experimentally intractable quantities such as energy dissipation, disturbance of the surrounding medium and viscous stresses, which are not possible by tracking the sperm head alone.

    WHAT IS KNOWN ALREADY: The clinical gold standard for sperm motility analysis comprises a manual analysis by a trained professional, with existing automated sperm diagnostics [computer-aided sperm analysis (CASA)] relying on tracking the sperm head and extrapolating measures. It is not currently possible with either of these approaches to track the sperm flagellar waveform for large numbers of cells in order to unlock the potential wealth of information enclosed within.

    STUDY DESIGN, SIZE, DURATION: The software tool in this manuscript has been developed to enable high-throughput, repeatable, accurate and verifiable analysis of the sperm flagellar beat.

    PARTICIPANTS/MATERIALS, SETTING, METHODS: Using the software tool [Flagellar Analysis and Sperm Tracking (FAST)] described in this manuscript, we have analysed 176 experimental microscopy videos and have tracked the head and flagellum of 205 progressive cells in diluted semen (DSM), 119 progressive cells in a high-viscosity medium (HVM) and 42 stuck cells in a low-viscosity medium. Unscreened donors were recruited at Birmingham Women's and Children's NHS Foundation Trust after giving informed consent.

    MAIN RESULTS AND THE ROLE OF CHANCE: We describe fully automated tracking and analysis of flagellar movement for large cell numbers. The analysis is demonstrated on freely motile cells in low- and high-viscosity fluids and validated on published data of tethered cells undergoing pharmacological hyperactivation. Direct analysis of the flagellar beat reveals that the CASA measure 'beat cross frequency' does not measure beat frequency; attempting to fit a straight line between the two measures gives ${\mathrm{R}}^2$ values of 0.042 and 0.00054 for cells in DSM and HVM, respectively. A new measurement, track centroid speed, is validated as an accurate differentiator of progressive motility. Coupled with fluid mechanics codes, waveform data enable extraction of experimentally intractable quantities such as energy dissipation, disturbance of the surrounding medium and viscous stresses. We provide a powerful and accessible research tool, enabling connection of the mechanical activity of the sperm to its motility and effect on its environment.

    LARGE SCALE DATA: The FAST software package and all documentation can be downloaded from www.flagellarCapture.com.

    LIMITATIONS, REASONS FOR CAUTION: The FAST software package has only been tested for use with negative phase contrast microscopy. Other imaging modalities, with bright cells on a dark background, have not been tested but may work. FAST is not designed to analyse raw semen; it is specifically for precise analysis of flagellar kinematics, as that is the promising area for computer use. Flagellar capture will always require that cells are at a dilution where their paths do not frequently cross.

    WIDER IMPLICATIONS OF THE FINDINGS: Combining tracked flagella with mathematical modelling has the potential to reveal new mechanistic insight. By providing the capability as a free-to-use software package, we hope that this ability to accurately quantify the flagellar waveform in large populations of motile cells will enable an abundant array of diagnostic, toxicological and therapeutic possibilities, as well as creating new opportunities for assessing and treating male subfertility.

    STUDY FUNDING/COMPETING INTEREST(S): M.T.G., G.C., J.C.K-B. and D.J.S. gratefully acknowledge funding from the Engineering and Physical Sciences Research Council, Healthcare Technologies Challenge Award (Rapid Sperm Capture EP/N021096/1). J.C.K-B. is funded by a National Institute of Health Research (NIHR) and Health Education England, Senior Clinical Lectureship Grant: The role of the human sperm in healthy live birth (NIHRDH-HCS SCL-2014-05-001). This article presents independent research funded in part by the NIHR and Health Education England. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The data for experimental set (2) were funded through a Wellcome Trust-University of Birmingham Value in People Fellowship Bridging Award (E.H.O.).The authors declare no competing interests.

  2. Global Burden of Disease Pediatrics Collaboration, Kyu HH, Pinho C, Wagner JA, Brown JC, Bertozzi-Villa A, et al.
    JAMA Pediatr, 2016 Mar;170(3):267-87.
    PMID: 26810619 DOI: 10.1001/jamapediatrics.2015.4276
    IMPORTANCE: The literature focuses on mortality among children younger than 5 years. Comparable information on nonfatal health outcomes among these children and the fatal and nonfatal burden of diseases and injuries among older children and adolescents is scarce.

    OBJECTIVE: To determine levels and trends in the fatal and nonfatal burden of diseases and injuries among younger children (aged <5 years), older children (aged 5-9 years), and adolescents (aged 10-19 years) between 1990 and 2013 in 188 countries from the Global Burden of Disease (GBD) 2013 study.

    EVIDENCE REVIEW: Data from vital registration, verbal autopsy studies, maternal and child death surveillance, and other sources covering 14,244 site-years (ie, years of cause of death data by geography) from 1980 through 2013 were used to estimate cause-specific mortality. Data from 35,620 epidemiological sources were used to estimate the prevalence of the diseases and sequelae in the GBD 2013 study. Cause-specific mortality for most causes was estimated using the Cause of Death Ensemble Model strategy. For some infectious diseases (eg, HIV infection/AIDS, measles, hepatitis B) where the disease process is complex or the cause of death data were insufficient or unavailable, we used natural history models. For most nonfatal health outcomes, DisMod-MR 2.0, a Bayesian metaregression tool, was used to meta-analyze the epidemiological data to generate prevalence estimates.

    FINDINGS: Of the 7.7 (95% uncertainty interval [UI], 7.4-8.1) million deaths among children and adolescents globally in 2013, 6.28 million occurred among younger children, 0.48 million among older children, and 0.97 million among adolescents. In 2013, the leading causes of death were lower respiratory tract infections among younger children (905.059 deaths; 95% UI, 810,304-998,125), diarrheal diseases among older children (38,325 deaths; 95% UI, 30,365-47,678), and road injuries among adolescents (115,186 deaths; 95% UI, 105,185-124,870). Iron deficiency anemia was the leading cause of years lived with disability among children and adolescents, affecting 619 (95% UI, 618-621) million in 2013. Large between-country variations exist in mortality from leading causes among children and adolescents. Countries with rapid declines in all-cause mortality between 1990 and 2013 also experienced large declines in most leading causes of death, whereas countries with the slowest declines had stagnant or increasing trends in the leading causes of death. In 2013, Nigeria had a 12% global share of deaths from lower respiratory tract infections and a 38% global share of deaths from malaria. India had 33% of the world's deaths from neonatal encephalopathy. Half of the world's diarrheal deaths among children and adolescents occurred in just 5 countries: India, Democratic Republic of the Congo, Pakistan, Nigeria, and Ethiopia.

    CONCLUSIONS AND RELEVANCE: Understanding the levels and trends of the leading causes of death and disability among children and adolescents is critical to guide investment and inform policies. Monitoring these trends over time is also key to understanding where interventions are having an impact. Proven interventions exist to prevent or treat the leading causes of unnecessary death and disability among children and adolescents. The findings presented here show that these are underused and give guidance to policy makers in countries where more attention is needed.

  3. Murray CJ, Ortblad KF, Guinovart C, Lim SS, Wolock TM, Roberts DA, et al.
    Lancet, 2014 Sep 13;384(9947):1005-70.
    PMID: 25059949 DOI: 10.1016/S0140-6736(14)60844-8
    BACKGROUND: The Millennium Declaration in 2000 brought special global attention to HIV, tuberculosis, and malaria through the formulation of Millennium Development Goal (MDG) 6. The Global Burden of Disease 2013 study provides a consistent and comprehensive approach to disease estimation for between 1990 and 2013, and an opportunity to assess whether accelerated progress has occured since the Millennium Declaration.

    METHODS: To estimate incidence and mortality for HIV, we used the UNAIDS Spectrum model appropriately modified based on a systematic review of available studies of mortality with and without antiretroviral therapy (ART). For concentrated epidemics, we calibrated Spectrum models to fit vital registration data corrected for misclassification of HIV deaths. In generalised epidemics, we minimised a loss function to select epidemic curves most consistent with prevalence data and demographic data for all-cause mortality. We analysed counterfactual scenarios for HIV to assess years of life saved through prevention of mother-to-child transmission (PMTCT) and ART. For tuberculosis, we analysed vital registration and verbal autopsy data to estimate mortality using cause of death ensemble modelling. We analysed data for corrected case-notifications, expert opinions on the case-detection rate, prevalence surveys, and estimated cause-specific mortality using Bayesian meta-regression to generate consistent trends in all parameters. We analysed malaria mortality and incidence using an updated cause of death database, a systematic analysis of verbal autopsy validation studies for malaria, and recent studies (2010-13) of incidence, drug resistance, and coverage of insecticide-treated bednets.

    FINDINGS: Globally in 2013, there were 1·8 million new HIV infections (95% uncertainty interval 1·7 million to 2·1 million), 29·2 million prevalent HIV cases (28·1 to 31·7), and 1·3 million HIV deaths (1·3 to 1·5). At the peak of the epidemic in 2005, HIV caused 1·7 million deaths (1·6 million to 1·9 million). Concentrated epidemics in Latin America and eastern Europe are substantially smaller than previously estimated. Through interventions including PMTCT and ART, 19·1 million life-years (16·6 million to 21·5 million) have been saved, 70·3% (65·4 to 76·1) in developing countries. From 2000 to 2011, the ratio of development assistance for health for HIV to years of life saved through intervention was US$4498 in developing countries. Including in HIV-positive individuals, all-form tuberculosis incidence was 7·5 million (7·4 million to 7·7 million), prevalence was 11·9 million (11·6 million to 12·2 million), and number of deaths was 1·4 million (1·3 million to 1·5 million) in 2013. In the same year and in only individuals who were HIV-negative, all-form tuberculosis incidence was 7·1 million (6·9 million to 7·3 million), prevalence was 11·2 million (10·8 million to 11·6 million), and number of deaths was 1·3 million (1·2 million to 1·4 million). Annualised rates of change (ARC) for incidence, prevalence, and death became negative after 2000. Tuberculosis in HIV-negative individuals disproportionately occurs in men and boys (versus women and girls); 64·0% of cases (63·6 to 64·3) and 64·7% of deaths (60·8 to 70·3). Globally, malaria cases and deaths grew rapidly from 1990 reaching a peak of 232 million cases (143 million to 387 million) in 2003 and 1·2 million deaths (1·1 million to 1·4 million) in 2004. Since 2004, child deaths from malaria in sub-Saharan Africa have decreased by 31·5% (15·7 to 44·1). Outside of Africa, malaria mortality has been steadily decreasing since 1990.

    INTERPRETATION: Our estimates of the number of people living with HIV are 18·7% smaller than UNAIDS's estimates in 2012. The number of people living with malaria is larger than estimated by WHO. The number of people living with HIV, tuberculosis, or malaria have all decreased since 2000. At the global level, upward trends for malaria and HIV deaths have been reversed and declines in tuberculosis deaths have accelerated. 101 countries (74 of which are developing) still have increasing HIV incidence. Substantial progress since the Millennium Declaration is an encouraging sign of the effect of global action.

    FUNDING: Bill & Melinda Gates Foundation.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links