Displaying publications 1 - 20 of 28 in total

  1. Low CF, Bunawan H
    Data Brief, 2016 Sep;8:1454-61.
    PMID: 27617282 DOI: 10.1016/j.dib.2016.08.025
    In this article, nine complete genomes of viruses from the genus Alphanodavirus and Betanodavirus (Family Nodaviridae) were comparatively analyzed and the data of their evolutionary origins and relatedness are reported. The nucleotide sequence alignment of the complete genomes from all species and their deduced evolutionary relationships are presented. High sequence similarity within the genus Betanodavirus compared to the genus Alphanodavirus was revealed in multiple sequence alignment of the Nodaviridae genomes. The amino acid sequence similarity for both RNA1 and RNA2 ORF is more conserved in Betanodavirus, compared to Alphanodavirus. The conserved and variable regions within the virus genome that were defined based on the multiple sequence alignments are presented in this dataset.
  2. Kannan M, Ismail I, Bunawan H
    Viruses, 2018 09 13;10(9).
    PMID: 30217014 DOI: 10.3390/v10090492
    Maize dwarf mosaic virus (MDMV) is a serious maize pathogen, epidemic worldwide, and one of the most common virus diseases for monocotyledonous plants, causing up to 70% loss in corn yield globally since 1960. MDMV belongs to the genus Potyvirus (Potyviridae) and was first identified in 1964 in Illinois in corn and Johnsongrass. MDMV is a single stranded positive sense RNA virus and is transmitted in a non-persistent manner by several aphid species. MDMV is amongst the most important virus diseases in maize worldwide. This review will discuss its genome, transmission, symptomatology, diagnosis and management. Particular emphasis will be given to the current state of knowledge on the diagnosis and control of MDMV, due to its importance in reducing the impact of maize dwarf mosaic disease, to produce an enhanced quality and quantity of maize.
  3. Amin NM, Bunawan H, Redzuan RA, Jaganath IB
    Int J Mol Sci, 2010;12(1):39-45.
    PMID: 21339975 DOI: 10.3390/ijms12010039
    Erwinia mallotivora was isolated from papaya infected with dieback disease showing the typical symptoms of greasy, water-soaked lesions and spots on leaves. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belonged to the genus Erwinia and was united in a monophyletic group with E. mallotivora DSM 4565 (AJ233414). Earlier studies had indicated that the causal agent for this disease was E. papayae. However, our current studies, through Koch's postulate, have confirmed that papaya dieback disease is caused by E. mallotivora. To our knowledge, this is the first new discovery of E. mallotivora as a causal agent of papaya dieback disease in Peninsular Malaysia. Previous reports have suggested that E. mallotivora causes leaf spot in Mallotus japonicus. However, this research confirms it also to be pathogenic to Carica papaya.
  4. Samsir SA, Bunawan H, Yen CC, Noor NM
    Data Brief, 2016 Sep;8:1-5.
    PMID: 27257614 DOI: 10.1016/j.dib.2016.04.062
    In this dataset, we distinguish 15 accessions of Garcinia mangostana from Peninsular Malaysia using Fourier transform-infrared spectroscopy coupled with chemometric analysis. We found that the position and intensity of characteristic peaks at 3600-3100 cm(-) (1) in IR spectra allowed discrimination of G. mangostana from different locations. Further principal component analysis (PCA) of all the accessions suggests the two main clusters were formed: samples from Johor, Melaka, and Negeri Sembilan (South) were clustered together in one group while samples from Perak, Kedah, Penang, Selangor, Kelantan, and Terengganu (North and East Coast) were in another clustered group.
  5. Ramzi AB, Baharum SN, Bunawan H, Scrutton NS
    Front Bioeng Biotechnol, 2020;8:608918.
    PMID: 33409270 DOI: 10.3389/fbioe.2020.608918
    Increasing demands for the supply of biopharmaceuticals have propelled the advancement of metabolic engineering and synthetic biology strategies for biomanufacturing of bioactive natural products. Using metabolically engineered microbes as the bioproduction hosts, a variety of natural products including terpenes, flavonoids, alkaloids, and cannabinoids have been synthesized through the construction and expression of known and newly found biosynthetic genes primarily from model and non-model plants. The employment of omics technology and machine learning (ML) platforms as high throughput analytical tools has been increasingly leveraged in promoting data-guided optimization of targeted biosynthetic pathways and enhancement of the microbial production capacity, thereby representing a critical debottlenecking approach in improving and streamlining natural products biomanufacturing. To this end, this mini review summarizes recent efforts that utilize omics platforms and ML tools in strain optimization and prototyping and discusses the beneficial uses of omics-enabled discovery of plant biosynthetic genes in the production of complex plant-based natural products by bioengineered microbes.
  6. Kannan M, Zainal Z, Ismail I, Baharum SN, Bunawan H
    Viruses, 2020 07 26;12(8).
    PMID: 32722532 DOI: 10.3390/v12080803
    Numerous potyvirus studies, including virus biology, transmission, viral protein function, as well as virus-host interaction, have greatly benefited from the utilization of reverse genetic techniques. Reverse genetics of RNA viruses refers to the manipulation of viral genomes, transfection of the modified cDNAs into cells, and the production of live infectious progenies, either wild-type or mutated. Reverse genetic technology provides an opportunity of developing potyviruses into vectors for improving agronomic traits in plants, as a reporter system for tracking virus infection in hosts or a production system for target proteins. Therefore, this review provides an overview on the breakthroughs achieved in potyvirus research through the implementation of reverse genetic systems.
  7. Kannan M, Saad MM, Talip N, Baharum SN, Bunawan H
    Microbiol Resour Announc, 2019 May 16;8(20).
    PMID: 31097500 DOI: 10.1128/MRA.00262-19
    Rice tungro disease was discovered in Malaysia in the 1930s. The first and only genome of Rice tungro bacilliform virus (RTBV) isolated from rice in Malaysia was sequenced in 1999. After nearly two decades, here, we present the complete genome sequence of an RTBV isolate in rice from Seberang Perai, Malaysia.
  8. Samsir SA, Bunawan H, Yen CC, Noor NM
    Data Brief, 2016 Sep;8:1438-42.
    PMID: 27617279 DOI: 10.1016/j.dib.2016.08.016
    In this dataset, we present 15 Simple Sequence Repeat (SSR) markers with the motifs (AC)n, (GA)n, and (AC)n(AG)n using a ISSR-Suppression-PCR technique in order to discriminate Garcinia mangostana from diverse geographical origins in Peninsular Malaysia. A few loci showed differences between 3 and 6 bp in allele size, indicating that there are some polymorphisms between individuals correlating to the number of SSR repeats that may be useful for differentiate of genotypes. Collectively, these data show that the ISSR-Suppression-PCR is a valuable method to illustrate genetic variation of selected G. mangostana in Malaysia.
  9. Bunawan H, Yen CC, Yaakop S, Noor NM
    BMC Res Notes, 2017 Jan 26;10(1):67.
    PMID: 28126013 DOI: 10.1186/s13104-017-2379-1
    The chloroplastic trnL intron and the nuclear internal transcribed spacer (ITS) region were sequenced for 11 Nepenthes species recorded in Peninsular Malaysia to examine their phylogenetic relationship and to evaluate the usage of trnL intron and ITS sequences for phylogenetic reconstruction of this genus.
  10. Gunasekaran D, Bunawan H, Ismail I, Noor NM
    Data Brief, 2018 Aug;19:1423-1427.
    PMID: 30229014 DOI: 10.1016/j.dib.2018.06.025
    In this dataset, we differentiate four different tissues of Cosmos caudatus Kunth (leaves, flowers, stem and root) obtained from UKM Bangi plot, based on Fourier transform-infrared spectroscopy. Different tissues of C. caudatus demonstrated the position and intensity of characteristic peaks at 4000-450 cm-1. Principal component analysis (PCA) shows three main groups were formed. The samples from leaves and flowers were found to be clustered together in one group, while the samples from stems and roots were clustered into two separate groups, respectively. This data provides an insight into the fingerprint identification and distribution of metabolites in the different organs of this species.
  11. Bunawan H, Bunawan SN, Baharum SN, Noor NM
    PMID: 26413127 DOI: 10.1155/2015/714158
    Sauropus androgynus L. Merr. is one of the most popular herbs in South Asia, Southeast Asia, and China where it was known as a slimming agent until two outbreaks of pulmonary dysfunction were reported in Taiwan and Japan in 1995 and 2005, respectively. Several studies described that the excessive consumption of Sauropus androgynus could cause drowsiness, constipation, and bronchiolitis obliterans and may lead to respiratory failure. Interestingly, this herb has been used in Malaysia and Indonesia in cooking and is commonly called the "multigreen" or "multivitamin" plant due to its high nutritive value and inexpensive source of dietary protein. The plant is widely used in traditional medicine for wound healing, inducing lactation, relief of urinary disorders, as an antidiabetic cure and also fever reduction. Besides these medicinal uses, the plant can also be used as colouring agent in food. This review will explore and compile the fragmented knowledge available on the botany, ethnobotany, chemical constitutes, pharmacological properties, and toxicological aspects of this plant. This comprehensive review will give readers the fundamental, comprehensive, and current knowledge regarding Sauropus androgynus L. Merr.
  12. Ahmad R, Baharum SN, Bunawan H, Lee M, Mohd Noor N, Rohani ER, et al.
    Molecules, 2014 Nov 20;19(11):19220-42.
    PMID: 25420073 DOI: 10.3390/molecules191119220
    The aim of this research was to identify the volatile metabolites produced in different organs (leaves, stem and roots) of Polygonum minus, an important essential oil producing crop in Malaysia. Two methods of extraction have been applied: Solid Phase Microextraction (SPME) and hydrodistillation coupled with Gas Chromatography-Mass Spectrometry (GC-MS). Approximately, 77 metabolites have been identified and aliphatic compounds contribute significantly towards the aroma and flavour of this plant. Two main aliphatic compounds: decanal and dodecanal were found to be the major contributor. Terpenoid metabolites were identified abundantly in leaves but not in the stem and root of this plant. Further studies on antioxidant, total phenolic content, anticholinesterase and antimicrobial activities were determined in the essential oil and five different extracts. The plant showed the highest DPPH radical scavenging activity in polar (ethanol) extract for all the tissues tested. For anti-acetylcholinesterase activity, leaf in aqueous extract and methanol extract showed the best acetylcholinesterase inhibitory activities. However, in microbial activity, the non-polar extracts (n-hexane) showed high antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA) compared to polar extracts. This study could provide the first step in the phytochemical profiles of volatile compounds and explore the additional value of pharmacology properties of this essential oil producing crop Polygonum minus.
  13. Bunawan H, Choong CY, Md-Zain BM, Baharum SN, Noor NM
    Int J Mol Sci, 2011;12(11):7626-34.
    PMID: 22174621 DOI: 10.3390/ijms12117626
    Plastid trnL-trnF and nuclear ribosomal ITS sequences were obtained from selected wild-type individuals of Polygonum minus Huds. in Peninsular Malaysia. The 380 bp trnL-trnF sequences of the Polygonum minus accessions were identical. Therefore, the trnL-trnF failed to distinguish between the Polygonum minus accessions. However, the divergence of ITS sequences (650 bp) among the Polygonum minus accessions was 1%, indicating that these accessions could be distinguished by the ITS sequences. A phylogenetic relationship based on the ITS sequences was inferred using neighbor-joining, maximum parsimony and Bayesian inference. All of the tree topologies indicated that Polygonum minus from Peninsular Malaysia is unique and different from the synonymous Persicaria minor (Huds.) Opiz and Polygonum kawagoeanum Makino.
  14. Baharum SN, Bunawan H, Ghani MA, Mustapha WA, Noor NM
    Molecules, 2010;15(10):7006-15.
    PMID: 20944520 DOI: 10.3390/molecules15107006
    The essential oil in leaves of Polygonum minus Huds., a local aromatic plant, were identified by a pipeline of gas chromatography (GC) techniques coupled with mass-spectrometry (MS), flame ionization detector (FID) and two dimensional gas chromatography time of flight mass spectrometry (GC x GC-TOF MS). A total of 48 compounds with a good match and high probability values were identified using this technique. Meanwhile, 42 compounds were successfully identified in this study using GC-MS, a significantly larger number than in previous studies. GC-FID was used in determining the retention indices of chemical components in P. minus essential oil. The result also showed the efficiency and reliability were greatly improved when chemometric methods and retention indices were used in identification and quantification of chemical components in plant essential oil.
  15. Nurdalila AA, Bunawan H, Kumar SV, Rodrigues KF, Baharum SN
    Int J Mol Sci, 2015 Jul 02;16(7):14884-900.
    PMID: 26147421 DOI: 10.3390/ijms160714884
    Taxonomic confusion exists within the genus Epinephelus due to the lack of morphological specializations and the overwhelming number of species reported in several studies. The homogenous nature of the morphology has created confusion in the Malaysian Marine fish species Epinephelus fuscoguttatus and Epinephelus hexagonatus. In this study, the partial DNA sequence of the 16S gene and mitochondrial nucleotide sequences of two gene regions, Cytochrome Oxidase Subunit I and III were used to investigate the phylogenetic relationship between them. In the phylogenetic trees, E. fuscoguttatus was monophyletic with E. hexagonatus species and morphology examination shows that no significant differences were found in the morphometric features between these two taxa. This suggests that E. fuscoguttatus is not distinguishable from E. hexagonatus species, and that E. fuscoguttatus have been identified to be E. hexagonatus species is likely attributed to differences in environment and ability to camouflage themselves under certain conditions. Interestingly, this finding was also supported by Principal Component Analysis on Attenuated Total Reflectance-Fourier-transform Infrared (ATR-FTIR) data analysis. Molecular, morphological and meristic characteristics were combined with ATR-FTIR analysis used in this study offer new perspectives in fish species identification. To our knowledge, this is the first report of an extensive genetic population study of E. fuscoguttatus in Malaysia and this understanding will play an important role in informing genetic stock-specific strategies for the management and conservation of this highly valued fish.
  16. Kannan M, Mohamad Saad M, Zainal Z, Kassim H, Ismail I, Talip N, et al.
    Iran J Biotechnol, 2020 Oct;18(4):e2566.
    PMID: 34056024 DOI: 10.30498/IJB.2020.2566
    Background: Rice tungro disease (RTD) is a viral disease mainly affecting rice in Asia. RTD caused by Rice tungro bacilliform virus and Rice tungro spherical virus. To date, there are only 5 RTSV isolates have been reported.

    Objectives: In this study, we aimed to report the complete nucleotide sequence of Malaysian isolate of Rice tungro spherical virus Seberang Perai (RTSV-SP) for the first time. RTSV-SP was characterized and its evolutionary relationship with previously reported Indian and Philippines isolates were elucidated.

    Materials and Methods: RTSV-SP isolate was isolated from a recent outbreak in a paddy field in Seberang Perai zone of Malaysia. Its complete genome was amplified by RT-PCR, cloned and sequenced.

    Results: Sequence analysis indicated that the genome of RTSV-SP consisted of 12,173 nucleotides (nt). Comparative analysis of 6 complete genome sequences using Clustal Omega showed that Seberang Perai isolate shared the highest nucleotide identity (96.04%) with Philippine-A isolate, except that the sORF-2 of RTSV-SP is shorter than RTSV Philippine-A by 27 amino acid residues. RTSV-SP found to cluster in Southeast Asia (SEA) group based on the whole genome sequence phylogenetic analysis using MEGA X software.

    Conclusions: Phylogenetic classification of RTSV isolates based on the complete nucleotide sequences showed more distinctive clustering pattern with the addition of RTSV-SP whole genome to the available isolates. Present study described the isolation and molecular characterization of RTSV-SP.

  17. Akbar MA, Mohd Yusof NY, Tahir NI, Ahmad A, Usup G, Sahrani FK, et al.
    Mar Drugs, 2020 Feb 05;18(2).
    PMID: 32033403 DOI: 10.3390/md18020103
    Saxitoxin is an alkaloid neurotoxin originally isolated from the clam Saxidomus giganteus in 1957. This group of neurotoxins is produced by several species of freshwater cyanobacteria and marine dinoflagellates. The saxitoxin biosynthesis pathway was described for the first time in the 1980s and, since then, it was studied in more than seven cyanobacterial genera, comprising 26 genes that form a cluster ranging from 25.7 kb to 35 kb in sequence length. Due to the complexity of the genomic landscape, saxitoxin biosynthesis in dinoflagellates remains unknown. In order to reveal and understand the dynamics of the activity in such impressive unicellular organisms with a complex genome, a strategy that can carefully engage them in a systems view is necessary. Advances in omics technology (the collective tools of biological sciences) facilitated high-throughput studies of the genome, transcriptome, proteome, and metabolome of dinoflagellates. The omics approach was utilized to address saxitoxin-producing dinoflagellates in response to environmental stresses to improve understanding of dinoflagellates gene-environment interactions. Therefore, in this review, the progress in understanding dinoflagellate saxitoxin biosynthesis using an omics approach is emphasized. Further potential applications of metabolomics and genomics to unravel novel insights into saxitoxin biosynthesis in dinoflagellates are also reviewed.
  18. Ting TY, Li Y, Bunawan H, Ramzi AB, Goh HH
    J Biosci Bioeng, 2023 Apr;135(4):259-265.
    PMID: 36803862 DOI: 10.1016/j.jbiosc.2023.01.010
    Saccharomyces cerevisiae has a long-standing history of biotechnological applications even before the dawn of modern biotechnology. The field is undergoing accelerated advancement with the recent systems and synthetic biology approaches. In this review, we highlight the recent findings in the field with a focus on omics studies of S. cerevisiae to investigate its stress tolerance in different industries. The latest advancements in S. cerevisiae systems and synthetic biology approaches for the development of genome-scale metabolic models (GEMs) and molecular tools such as multiplex Cas9, Cas12a, Cpf1, and Csy4 genome editing tools, modular expression cassette with optimal transcription factors, promoters, and terminator libraries as well as metabolic engineering. Omics data analysis is key to the identification of exploitable native genes/proteins/pathways in S. cerevisiae with the optimization of heterologous pathway implementation and fermentation conditions. Through systems and synthetic biology, various heterologous compound productions that require non-native biosynthetic pathways in a cell factory have been established via different strategies of metabolic engineering integrated with machine learning.
  19. Natnan ME, Low CF, Chong CM, Bunawan H, Baharum SN
    Sci Rep, 2023 Aug 08;13(1):12830.
    PMID: 37553472 DOI: 10.1038/s41598-023-40096-7
    Grouper culture has been expanding in Malaysia due to the huge demand locally and globally. However, due to infectious diseases such as vibriosis, the fish mortality rate increased, which has affected the production of grouper. Therefore, this study focuses on the metabolic profiling of surviving infected grouper fed with different formulations of fatty acid diets that acted as immunostimulants for the fish to achieve desirable growth and health performance. After a six-week feeding trial and one-week post-bacterial challenge, the surviving infected grouper was sampled for GC-MS analysis. For metabolite extraction, a methanol/chloroform/water (2:2:1.8) extraction method was applied to the immune organs (spleen and liver) of surviving infected grouper. The distribution patterns of metabolites between experimental groups were then analyzed using a metabolomics platform. A total of 50 and 81 metabolites were putatively identified from the spleen and liver samples, respectively. Our further analysis identified glycine, serine, and threonine metabolism, and alanine, aspartate and glutamate metabolism had the most impacted pathways, respectively, in spleen and liver samples from surviving infected grouper. The metabolites that were highly abundant in the spleen found in these pathways were glycine (20.9%), l-threonine (1.0%) and l-serine (0.8%). Meanwhile, in the liver l-glutamine (1.8%) and aspartic acid (0.6%) were found to be highly abundant. Interestingly, among the fish diet groups, grouper fed with oleic acid diet produced more metabolites with a higher percent area compared to the control diets. The results obtained from this study elucidate the use of oleic acid as an immunostimulant in fish feed formulation affects more various immune-related metabolites than other formulated feed diets for vibriosis infected grouper.
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links