Displaying all 2 publications

Abstract:
Sort:
  1. Bungau SG, Behl T, Singh A, Sehgal A, Singh S, Chigurupati S, et al.
    Nutrients, 2021 Sep 26;13(10).
    PMID: 34684377 DOI: 10.3390/nu13103376
    Rheumatoid arthritis (RA) is a progressive inflammatory disorder characterized by swollen joints, discomfort, tightness, bone degeneration and frailty. Genetic, agamogenetic and sex-specific variables, Prevotella, diet, oral health and gut microbiota imbalance are all likely causes of the onset or development of RA, perhaps the specific pathways remain unknown. Lactobacillus spp. probiotics are often utilized as relief or dietary supplements to treat bowel diseases, build a strong immune system and sustain the immune system. At present, the action mechanism of Lactobacillus spp. towards RA remains unknown. Therefore, researchers conclude the latest analysis to effectively comprehend the ultimate pathogenicity of rheumatoid arthritis, as well as the functions of probiotics, specifically Lactobacillus casei or Lactobacillus acidophilus, in the treatment of RA in therapeutic and diagnostic reports. RA is a chronic inflammation immunological illness wherein the gut microbiota is affected. Probiotics are organisms that can regulate gut microbiota, which may assist to relieve RA manifestations. Over the last two decades, there has been a surge in the use of probiotics. However, just a few research have considered the effect of probiotic administration on the treatment and prevention of arthritis. Randomized regulated experimental trials have shown that particular probiotics supplement has anti-inflammatory benefits, helps people with RA enhance daily activities and alleviates symptoms. As a result, utilizing probiotic microorganisms as therapeutics could be a potential possibility for arthritis treatment. This review highlights the known data on the therapeutic and preventative effects of probiotics in RA, as well as their interactions.
  2. Latif MS, Azad AK, Nawaz A, Rashid SA, Rahman MH, Al Omar SY, et al.
    Polymers (Basel), 2021 Oct 09;13(20).
    PMID: 34685214 DOI: 10.3390/polym13203455
    Transdermal drug delivery systems (TDDSs) have become innovative, fascinating drug delivery methods intended for skin application to achieve systemic effects. TDDSs overcome the drawbacks associated with oral and parenteral routes of drug administration. The current investigation aimed to design, evaluate and optimize methotrexate (MTX)-loaded transdermal-type patches having ethyl cellulose (EC) and hydroxypropyl methyl cellulose (HPMC) at different concentrations for the local management of psoriasis. In vitro release and ex vivo permeation studies were carried out for the formulated patches. Various formulations (F1-F9) were developed using different concentrations of HPMC and EC. The F1 formulation having a 1:1 polymer concentration ratio served as the control formulation. ATR-FTIR analysis was performed to study drug-polymer interactions, and it was found that the drug and polymers were compatible with each other. The formulated patches were further investigated for their physicochemical parameters, in vitro release and ex vivo diffusion characteristics. Different parameters, such as surface pH, physical appearance, thickness, weight uniformity, percent moisture absorption, percent moisture loss, folding endurance, skin irritation, stability and drug content uniformity, were studied. From the hydrophilic mixture, it was observed that viscosity has a direct influence on drug release. Among all formulated patches, the F5 formulation exhibited 82.71% drug release in a sustained-release fashion and followed an anomalous non-Fickian diffusion. The permeation data of the F5 formulation exhibited about a 36.55% cumulative amount of percent drug permeated. The skin showed high retention for the F5 formulation (15.1%). The stability study indicated that all prepared formulations had very good stability for a period of 180 days. Therefore, it was concluded from the present study that methotrexate-loaded transdermal patches with EC and HPMC as polymers at different concentrations suit TDDSs ideally and improve patient compliance for the local management of psoriasis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links