Displaying all 6 publications

Abstract:
Sort:
  1. Ch'ng WC, Saw WT, Yusoff K, Shafee N
    Acta Virol., 2011;55(3):227-33.
    PMID: 21978156
    Enterovirus 71 (EV71) is one of the viruses that cause hand, foot and mouth disease. Its viral capsid protein 1 (VP1), which contains many neutralization epitopes, is an ideal target for vaccine development. Recently, we reported the induction of a strong immune response in rabbits to a truncated VP1 fragment (Nt-VP1t) displayed on a recombinant Newcastle disease virus (NDV) capsid protein. Protective efficacy of this vaccine, however, can only be tested in mice, since all EV71 animal models thus far were developed in mouse systems. In this study, we evaluated the type of immune responses against the protein developed by adult BALB/c mice. Nt-VP1t protein induced high levels of VP1 IgG antibody production in mice. Purified VP1 antigen stimulated activation, proliferation and differentiation of splenocytes harvested from these mice. They also produced significant levels of IFN-γ, a Th1-related cytokine. Taken together, Nt-VP1t protein is a potent immunogen in adult mice and our findings provide the data needed for testing of its protective efficacy in mouse models of EV71 infections.
  2. Ch'ng WC, Stanbridge EJ, Yusoff K, Shafee N
    J Interferon Cytokine Res, 2013 Jul;33(7):346-54.
    PMID: 23506478 DOI: 10.1089/jir.2012.0095
    Viral-mediated oncolysis is a promising cancer therapeutic approach offering an increased efficacy with less toxicity than the current therapies. The complexity of solid tumor microenvironments includes regions of hypoxia. In these regions, the transcription factor, hypoxia inducible factor (HIF), is active and regulates expression of many genes that contribute to aggressive malignancy, radio-, and chemo-resistance. To investigate the oncolytic efficacy of a highly virulent (velogenic) Newcastle disease virus (NDV) in the presence or absence of HIF-2α, renal cell carcinoma (RCC) cell lines with defective or reconstituted wild-type (wt) von Hippel-Lindau (VHL) activity were used. We show that these RCC cells responded to NDV by producing only interferon (IFN)-β, but not IFN-α, and are associated with increased STAT1 phosphorylation. Restoration of wt VHL expression enhanced NDV-induced IFN-β production, leading to prolonged STAT1 phosphorylation and increased cell death. Hypoxia augmented NDV oncolytic activity regardless of the cells' HIF-2α levels. These results highlight the potential of oncolytic NDV as a potent therapeutic agent in the killing of hypoxic cancer cells.
  3. Jamal MH, Ch'ng WC, Yusoff K, Shafee N
    Cancer Cell Int, 2012 Aug 01;12(1):35.
    PMID: 22853623 DOI: 10.1186/1475-2867-12-35
    BACKGROUND: Cisplatin resistance is a serious problem in cancer treatment. To overcome it, alternative approaches including virotherapy are being pursued. One of the candidates for anticancer virotherapy is the Newcastle disease virus (NDV). Even though NDV's oncolytic properties in various cancer cells have been widely reported, information regarding its effects on cisplatin resistant cancer cells is still limited. Therefore, we tested the oncolytic efficacy of a strain of NDV, designated as AF2240, in a cisplatin-resistant breast cancer cell line.

    METHODS: Cisplatin-resistant cell line (MCF7-CR) was developed from the MCF7 human breast adenocarcinoma cell line by performing a seven-cyclic exposure to cisplatin. Following NDV infection, fluorescence-activated cell sorting (FACS) analysis and immunoblotting were used to measure cell viability and viral protein expression, respectively. Production of virus progeny was then assessed by using the plaque assay technique.

    RESULTS: Infection of a mass population of the MCF7-CR with NDV resulted in 50% killing in the first 12 hours post-infection (hpi), comparable to the parental MCF7. From 12 hpi onwards, the remaining MCF7-CR became less susceptible to NDV killing. This reduced susceptibility led to increased viral protein synthesis and virus progeny production. The reduction was also associated with a prolonged cell survival via stabilization of the survivin protein.

    CONCLUSIONS: Our findings showed for the first time, the involvement of survivin in the reduction of NDV-induced oncolysis in a subpopulation of cisplatin-resistant cells. This information will be important towards improving the efficacy of NDV as an anticancer agent in drug resistant cancers.

  4. Ch'ng WC, Stanbridge EJ, Wong KT, Ong KC, Yusoff K, Shafee N
    Virol J, 2012;9:155.
    PMID: 22877087 DOI: 10.1186/1743-422X-9-155
    Enterovirus 71 (EV71) causes severe neurological diseases resulting in high mortality in young children worldwide. Development of an effective vaccine against EV71 infection is hampered by the lack of appropriate animal models for efficacy testing of candidate vaccines. Previously, we have successfully tested the immunogenicity and protectiveness of a candidate EV71 vaccine, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP11-100) protein, in a mouse model of EV71 infection. A drawback of this system is its limited window of EV71 susceptibility period, 2 weeks after birth, leading to restricted options in the evaluation of optimal dosing regimens. To address this issue, we have assessed the NPt-VP11-100 candidate vaccine in a hamster system, which offers a 4-week susceptibility period to EV71 infection. Results obtained showed that the NPt-VP11-100 candidate vaccine stimulated excellent humoral immune response in the hamsters. Despite the high level of antibody production, they failed to neutralize EV71 viruses or protect vaccinated hamsters in viral challenge studies. Nevertheless, these findings have contributed towards a better understanding of the NPt-VP11-100 recombinant protein as a candidate vaccine in an alternative animal model system.
  5. Ch'ng WC, Stanbridge EJ, Ong KC, Wong KT, Yusoff K, Shafee N
    J Med Virol, 2011 Oct;83(10):1783-91.
    PMID: 21837796 DOI: 10.1002/jmv.22198
    Enterovirus 71 (EV71) infection may cause severe neurological complications, particularly in young children. Despite the risks, there are still no commercially available EV71 vaccines. Hence, a candidate vaccine construct, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP1(1-100) ) protein, was evaluated in a mouse model of EV71 infection. Previously, it was shown that this protein construct provoked a strong immune response in vaccinated adult rabbits. That study, however, did not address the issue of its effectiveness against EV71 infection in young animals. In the present study, EV71 viral challenge in vaccinated newborn mice resulted in more than 40% increase in survival rate. Significantly, half of the surviving mice fully recovered from their paralysis. Histological analysis of all of the surviving mice revealed a complete clearance of EV71 viral antigens from their brains and spinal cords. In hind limb muscles, the amounts of the antigens detected correlated with the degrees of tissue damage and paralysis. Findings from this study provide evidence that immunization with the NPt-VP1(1-100) immunogen in a newborn mouse model confers partial protection against EV71 infection, and also highlights the importance of NPt-VP1(1-100) as a possible candidate vaccine for protection against EV71 infections.
  6. Ch'ng WC, Abd-Aziz N, Ong MH, Stanbridge EJ, Shafee N
    Cell Oncol (Dordr), 2015 Aug;38(4):279-88.
    PMID: 25930675 DOI: 10.1007/s13402-015-0229-5
    Newcastle disease virus (NDV) is an oncolytic virus that is known to have a higher preference to cancer cells than to normal cells. It has been proposed that this higher preference may be due to defects in the interferon (IFN) responses of cancer cells. The exact mechanism underlying this process, however, remains to be resolved. In the present study, we examined the antiviral response towards NDV infection of clear cell renal cell carcinoma (ccRCC) cells. ccRCC is associated with mutations of the von Hippel-Lindau tumor suppressor gene VHL, whose protein product is important for eliciting cellular responses to changes in oxygen levels. The most common first line treatment strategy of ccRCC includes IFN. Unfortunately, most ccRCC cases are diagnosed at a late stage and often are resistant to IFN-based therapies. Alternative treatment approaches, including virotherapy using oncolytic viruses, are currently being investigated. The present study was designed to investigate the mechanistic pathways underlying the response of ccRCC cells to oncolytic NDV infection.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links