Displaying publications 1 - 20 of 112 in total

  1. Lazim, S. S. R. M., Nawi, N. M., Rasli, A. M. M., Chen, G., Jensen, T.
    The influence of different data pre-processing methods (smoothing by moving average (MA),
    multiplicative scatter correction (MSC), Savitzky-Golay (SG), standard normal variate (SNV)
    and mean normalization (MN) on the prediction of sugar content from sugarcane samples was
    investigated. The performance of these pre-processing methods was evaluated using spectral
    data collected from 292 sugarcane internode samples using a visible-shortwave near infrared
    spectroradiometer (VNIRS). Partial least square (PLS) method was applied to develop both
    calibration and prediction models for the samples. If no pre-processing method was applied,
    the coefficient of determination (R2) values for both reflectance and absorbance data were 0.81
    and 0.86 respectively. The highest prediction accuracy values were obtained when the data was
    treated with MSC method, where the R2 values for reflectance and absorbance being 0.85 and
    0.87, respectively. From this study, it was concluded that pre-processing can improve the model
    performances where MSC method was found to give the highest prediction accuracy value.
  2. Nawi NM, Yahya A, Chen G, Bockari-Gevao SM, Maraseni TN
    J Agric Saf Health, 2012 Jan;18(1):45-56.
    PMID: 22458015
    A study was undertaken to evaluate the human energy consumption of various field operations involved in lowland rice cultivation in Malaysia. Based on recorded average heart rates, fertilizing was found to be the most strenuous operation, with an average heart rate of 138 beats min(-1). There were no significant differences in the average heart rates of the subjects among the individual tasks within the first plowing, second plowing, and harvesting operations, with the average heart rates for these three tasks being 116, 106, and 106 beats min(-1), respectively. The corresponding energy expenditures were 3.90, 3.43, and 3.35 kcal min(-1). Loading the seed into the blower tank and broadcasting the seed were the most critical tasks for the seed broadcasting operation, with average heart rates of 124 and 136 beats min(-1), respectively. The highest energy expenditure of 418.38 kcal ha(-1) was observed for seed broadcasting, and the lowest energy expenditure of 127.96 kcal ha(-1) was for second plowing. The total seasonal human energy expenditure for rice cultivation was estimated to be 5810.71 kcal ha(-1), 55.7% of which was spent on pesticide spraying. Although the sample size in this study was relatively small, the results indicated that human energy expenditure per unit area (kcal ha(-1)) was positively linked to the average heart rate of the subjects and negatively linked to the field capacity. Thus, mechanization of certain tasks could decrease worker physical effort and fatigue and increase production.
  3. Onwude DI, Hashim N, Abdan K, Janius R, Chen G
    J. Sci. Food Agric., 2018 Mar;98(4):1310-1324.
    PMID: 28758207 DOI: 10.1002/jsfa.8595
    BACKGROUND: Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying.

    RESULTS: The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95.

    CONCLUSION: Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry.

  4. Tso CP, Hor CH, Chen GM, Kok CK
    Heliyon, 2018 Dec;4(12):e01085.
    PMID: 30627676 DOI: 10.1016/j.heliyon.2018.e01085
    The synovial fluid motion in an artificial hip joint is important in understanding the thermo-fluids effects that can affect the reliability of the joint, although it is difficult to be studied theoretically, as the modelling involves the viscous fluid interacting with a moving surface. A new analytical solution has been derived for the maximum induced fluid motion within a spherical gap with an oscillating lower surface and a stationary upper surface, assuming one-dimensional incompressible laminar Newtonian flow with constant properties, and using the Navier-Stokes equation. The resulting time-dependent motion is analysed in terms of two dimensionless parameters R and β, which are functions of geometry, fluid properties and the oscillation rate. The model is then applied to the conditions of the synovial fluid enclosed in the artificial hip joint and it is found that the motion may be described by a simpler velocity variation, whereby laying the foundation to thermal studies in the joint.
  5. Wang Y, Chen G, Liang J, Zou Y, Wen X, Liao X, et al.
    Environ Sci Pollut Res Int, 2015 Dec;22(23):18469-76.
    PMID: 26278905 DOI: 10.1007/s11356-015-5170-7
    Using manure collected from swine fed with diet containing antibiotics and antibiotic-free swine manure spiked with antibiotics are the two common methods of studying the degradation behavior of veterinary antibiotic in manure in the environment. However, few studies had been conducted to co-compare these two different antibiotic addition methods. This study used oxytetracycline (OTC) as a model antibiotic to study antibiotic degradation behavior in manure under the above two OTC addition methods. In addition, the role of microorganisms present in the manure on degradation behavior was also examined. The results showed that degradation half-life of OTC in manure from swine fed OTC (9.04 days) was significantly shorter than that of the manure directly treated with OTC (9.65 days). Concentration of 4-epi-OTC in manure from swine fed OTC peaked earlier than that in manure spiked with OTC, and the degradation rates of 4-epi-OTC and α-apo-OTC in the manure from swine fed OTC were faster, but the peak concentrations were lower, than those in manure spiked with OTC. Bacterial diversity and relative abundance of Bacillus cereus data demonstrated that sterilization of the manure before experiment significantly decreased OTC degradation rate in both of the addition methods. Results of the present study demonstrated that the presence of the metabolites (especially 4-epi-OTC) and microorganisms had significant influence on OTC degradation.
  6. Chen G, Zhou W, Guan D, Sunarso J, Zhu Y, Hu X, et al.
    Sci Adv, 2017 06;3(6):e1603206.
    PMID: 28691090 DOI: 10.1126/sciadv.1603206
    Perovskite oxides exhibit potential for use as electrocatalysts in the oxygen evolution reaction (OER). However, their low specific surface area is the main obstacle to realizing a high mass-specific activity that is required to be competitive against the state-of-the-art precious metal-based catalysts. We report the enhanced performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) for the OER with intrinsic activity that is significantly higher than that of the benchmark IrO2, and this result was achieved via fabrication of an amorphous BSCF nanofilm on a surface-oxidized nickel substrate by magnetron sputtering. The surface nickel oxide layer of the Ni substrate and the thickness of the BSCF film were further used to tune the intrinsic OER activity and stability of the BSCF catalyst by optimizing the electronic configuration of the transition metal cations in BSCF via the interaction between the nanofilm and the surface nickel oxide, which enables up to 315-fold enhanced mass-specific activity compared to the crystalline BSCF bulk phase. Moreover, the amorphous BSCF-Ni foam anode coupled with the Pt-Ni foam cathode demonstrated an attractive small overpotential of 0.34 V at 10 mA cm-2 for water electrolysis, with a BSCF loading as low as 154.8 μg cm-2.
  7. Sun H, Chen G, Sunarso J, Dai J, Zhou W, Shao Z
    ACS Appl Mater Interfaces, 2018 May 23;10(20):16939-16942.
    PMID: 29741862 DOI: 10.1021/acsami.8b03702
    An abundant, highly active, and durable oxygen evolution reaction (OER) electrocatalyst is an enabling component for a more sustainable energy future. We report, herein, a molybdenum and niobium codoped B-site-ordered double perovskite oxide with a compositional formula of Ba2CoMo0.5Nb0.5O6-δ (BCMN) as an active and robust catalyst for OER in an alkaline electrolyte. BCMN displayed a low overpotential of 445 mA at a current density of 10 mA cm-2disk. BCMN also showed long-term stability in an alkaline medium. This work hints toward the possibility of combining a codoping approach with double perovskite structure formation to achieve significant enhancement in the OER performance.
  8. Hu T, Qiu W, He B, Zhang Y, Yu J, Liang X, et al.
    BMC Microbiol., 2014;14:293.
    PMID: 25433675 DOI: 10.1186/s12866-014-0293-4
    In recent years novel human respiratory disease agents have been described for Southeast Asia and Australia. The causative pathogens were classified as pteropine orthoreoviruses with a strong phylogenetic relationship to orthoreoviruses of bat origin.
  9. Shan L, Kadhum AAH, Al-Furjan MSH, Weng W, Gong Y, Cheng K, et al.
    Materials (Basel), 2019 Mar 10;12(5).
    PMID: 30857349 DOI: 10.3390/ma12050815
    It is well known that three-dimensional (3D) printing is an emerging technology used to produce customized implants and surface characteristics of implants, strongly deciding their osseointegration ability. In this study, Ti alloy microspheres were printed under selected rational printing parameters in order to tailor the surface micro-characteristics of the printed implants during additive manufacturing by an in situ, controlled way. The laser path and hatching space were responsible for the appearance of the stripy structure (S), while the bulbous structure (B) and bulbous⁻stripy composite surface (BS) were determined by contour scanning. A nano-sized structure could be superposed by hydrothermal treatment. The cytocompatibility was evaluated by culturing Mouse calvaria-derived preosteoblastic cells (MC3T3-E1). The results showed that three typical microstructured surfaces, S, B, and BS, could be achieved by varying the 3D printing parameters. Moreover, the osteogenic differentiation potential of the S, B, and BS surfaces could be significantly enhanced, and the addition of nano-sized structures could be further improved. The BS surface with nano-sized structure demonstrated the optimum osteogenic differentiation potential. The present research demonstrated an in situ, controlled way to tailor and optimize the surface structures in micro-size during the 3D printing process for an implant with higher osseointegration ability.
  10. Sun Y, Chen G, Wang L, Li N, Srisurapanont M, Hong JP, et al.
    Front Psychiatry, 2019;10:321.
    PMID: 31156476 DOI: 10.3389/fpsyt.2019.00321
    Stigma of major depressive disorder (MDD) is an important public health problem. This study aimed to examine the level of perceived stigma and its associated factors in MDD patients in five Asian countries, including China, Korea, Malaysia, Singapore, and Thailand. A total of 547 outpatients with MDD were included from Asian countries. We used the stigma scale of the Explanatory Model Interview Catalogue (EMIC) to assess stigma. The Montgomery-Asberg Depression Rating Scale (MADRS), Symptoms Checklist 90-Revised (SCL-90-R), Fatigue Severity Scale (FSS), Sheehan Disability Scale (SDS), 36-Item Short-Form Health Survey (SF-36), and Multidimensional Scale of Perceived Social Support (MSPSS) were used to assess symptoms, clinical features, functional impairment, health status, and social support. The stigma scores of patients under 55 years old were significantly higher than those equal to or greater than 55 years old (P < 0.001). The stigma scores exhibited significant negative correlation with age; MSPSS scores of family, friends, and others; and SF-36 subscale of mental health, but significant positive correlation with MADRS, FSS, SDS, and SCL-90-R subscale scores of depression, interpersonal sensitivity, obsession-compulsion, psychoticism, and somatization. Multivariate regression analysis revealed that age, SCL-90-R interpersonal sensitivity, obsession-compulsion, psychoticism, MSPSS scores of friends and others, and SF-36 of mental health were significantly associated with the level of perceived stigma. These findings suggest that MDD patients who are young, have a high degree of interpersonal sensitivity and psychoticism, have low health-related quality of life, and have low social support are the target population for stigma interventions in Asia.
  11. Cheng J, Wang Y, Hou J, Luo D, Xie Q, Ning Q, et al.
    J. Clin. Virol., 2014 Dec;61(4):509-16.
    PMID: 25200354 DOI: 10.1016/j.jcv.2014.08.008
    In mainland China, peginterferon (PEG-IFN) alfa-2b 1.0μg/kg/wk for 24 weeks is the approved treatment for HBeAg-positive chronic hepatitis B.
  12. Gurr GM, Lu Z, Zheng X, Xu H, Zhu P, Chen G, et al.
    Nat Plants, 2016 02 22;2:16014.
    PMID: 27249349 DOI: 10.1038/nplants.2016.14
    Global food security requires increased crop productivity to meet escalating demand(1-3). Current food production systems are heavily dependent on synthetic inputs that threaten the environment and human well-being(2,4,5). Biodiversity, for instance, is key to the provision of ecosystem services such as pest control(6,7), but is eroded in conventional agricultural systems. Yet the conservation and reinstatement of biodiversity is challenging(5,8,9), and it remains unclear whether the promotion of biodiversity can reduce reliance on inputs without penalizing yields on a regional scale. Here we present results from multi-site field studies replicated in Thailand, China and Vietnam over a period of four years, in which we grew nectar-producing plants around rice fields, and monitored levels of pest infestation, insecticide use and yields. Compiling the data from all sites, we report that this inexpensive intervention significantly reduced populations of two key pests, reduced insecticide applications by 70%, increased grain yields by 5% and delivered an economic advantage of 7.5%. Additional field studies showed that predators and parasitoids of the main rice pests, together with detritivores, were more abundant in the presence of nectar-producing plants. We conclude that a simple diversification approach, in this case the growth of nectar-producing plants, can contribute to the ecological intensification of agricultural systems.
  13. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys. Rev. Lett., 2017 Oct 13;119(15):151802.
    PMID: 29077436 DOI: 10.1103/PhysRevLett.119.151802
    Results are reported from a search for supersymmetric particles in proton-proton collisions in the final state with a single lepton, multiple jets, including at least one b-tagged jet, and large missing transverse momentum. The search uses a sample of proton-proton collision data at sqrt[s]=13  TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9  fb^{-1}. The observed event yields in the signal regions are consistent with those expected from standard model backgrounds. The results are interpreted in the context of simplified models of supersymmetry involving gluino pair production, with gluino decay into either on- or off-mass-shell top squarks. Assuming that the top squarks decay into a top quark plus a stable, weakly interacting neutralino, scenarios with gluino masses up to about 1.9 TeV are excluded at 95% confidence level for neutralino masses up to about 1 TeV.
  14. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Phys. Rev. Lett., 2017 Oct 13;119(15):152301.
    PMID: 29077459 DOI: 10.1103/PhysRevLett.119.152301
    The differential production cross sections of B^{±} mesons are measured via the exclusive decay channels B^{±}→J/ψK^{±}→μ^{+}μ^{-}K^{±} as a function of transverse momentum in pp and Pb-Pb collisions at a center-of-mass energy sqrt[s_{NN}]=5.02  TeV per nucleon pair with the CMS detector at the LHC. The pp(Pb-Pb) data set used for this analysis corresponds to an integrated luminosity of 28.0  pb^{-1} (351  μb^{-1}). The measurement is performed in the B^{±} meson transverse momentum range of 7 to 50  GeV/c, in the rapidity interval |y|<2.4. In this kinematic range, a strong suppression of the production cross section by about a factor of 2 is observed in the Pb-Pb system in comparison to the expectation from pp reference data. These results are found to be roughly compatible with theoretical calculations incorporating beauty quark diffusion and energy loss in a quark-gluon plasma.
  15. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Phys. Rev. Lett., 2017 Oct 06;119(14):141802.
    PMID: 29053305 DOI: 10.1103/PhysRevLett.119.141802
    A search for charged Higgs bosons produced via vector boson fusion and decaying into W and Z bosons using proton-proton collisions at sqrt[s]=13  TeV is presented. The data sample corresponds to an integrated luminosity of 15.2  fb^{-1} collected with the CMS detector in 2015 and 2016. The event selection requires three leptons (electrons or muons), two jets with large pseudorapidity separation and high dijet mass, and missing transverse momentum. The observation agrees with the standard model prediction. Limits on the vector boson fusion production cross section times branching fraction for new charged physical states are reported as a function of mass from 200 to 2000 GeV and interpreted in the context of Higgs triplet models.
  16. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys. Rev. Lett., 2017 Mar 24;118(12):122301.
    PMID: 28388204 DOI: 10.1103/PhysRevLett.118.122301
    Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η|<2.4, and a third particle measured in the hadron forward calorimeters (4.4
  17. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(3):172.
    PMID: 28408859 DOI: 10.1140/epjc/s10052-017-4718-8
    The cross section of top quark-antiquark pair production in proton-proton collisions at [Formula: see text] is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2[Formula: see text]. The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is [Formula: see text], in agreement with the expectation from the standard model.
  18. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys. Rev. Lett., 2016 Jul 29;117(5):051802.
    PMID: 27517765 DOI: 10.1103/PhysRevLett.117.051802
    A search for the resonant production of high-mass photon pairs is presented. The analysis is based on samples of proton-proton collision data collected by the CMS experiment at center-of-mass energies of 8 and 13 TeV, corresponding to integrated luminosities of 19.7 and 3.3  fb^{-1}, respectively. The interpretation of the search results focuses on spin-0 and spin-2 resonances with masses between 0.5 and 4 TeV and with widths, relative to the mass, between 1.4×10^{-4} and 5.6×10^{-2}. Limits are set on scalar resonances produced through gluon-gluon fusion, and on Randall-Sundrum gravitons. A modest excess of events compatible with a narrow resonance with a mass of about 750 GeV is observed. The local significance of the excess is approximately 3.4 standard deviations. The significance is reduced to 1.6 standard deviations once the effect of searching under multiple signal hypotheses is considered. More data are required to determine the origin of this excess.
  19. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys. Rev. Lett., 2017 Dec 15;119(24):242001.
    PMID: 29286735 DOI: 10.1103/PhysRevLett.119.242001
    The first observation of top quark production in proton-nucleus collisions is reported using proton-lead data collected by the CMS experiment at the CERN LHC at a nucleon-nucleon center-of-mass energy of sqrt[s_{NN}]=8.16  TeV. The measurement is performed using events with exactly one isolated electron or muon candidate and at least four jets. The data sample corresponds to an integrated luminosity of 174  nb^{-1}. The significance of the tt[over ¯] signal against the background-only hypothesis is above 5 standard deviations. The measured cross section is σ_{tt[over ¯]}=45±8  nb, consistent with predictions from perturbative quantum chromodynamics.
  20. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys. Rev. Lett., 2017 Dec 01;119(22):221802.
    PMID: 29286783 DOI: 10.1103/PhysRevLett.119.221802
    A search for a signal consistent with the type-III seesaw mechanism in events with three or more electrons or muons is presented. The data sample consists of proton-proton collisions at sqrt[s]=13  TeV collected by the CMS experiment at the LHC in 2016 and corresponds to an integrated luminosity of 35.9  fb^{-1}. Selection criteria based on the number of leptons and the invariant mass of oppositely charged lepton pairs are used to distinguish the signal from the standard model background. The observations are consistent with the expectations from standard model processes. The results are used to place limits on the production of heavy fermions of the type-III seesaw model as a function of the branching ratio to each lepton flavor. In the scenario of equal branching fractions to each lepton flavor, heavy fermions with masses below 840 GeV are excluded. This is the most sensitive probe to date of the type-III seesaw mechanism.
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links